Learning to Embed Time Series Patches Independently

Seunghan Lee¹, Tayeoung Park^{1,2}, Kibok Lee^{1,2}

¹Department of Statistics and Data Science, Yonsei University, ²Department of Applied Statistics, Yonsei University

- between negative pairs

2. Patch Independent Task & Architecture

3. Complementary Contrastive Learning (CL)

- Propose complementary CL to hierarchically capture adjacent TS information efficiently
- Losses are computed on intermediate representations after each max-pooling layer along the temporal axis and then aggregated

5. Effectiveness of PI strategies

(1) Pretraining with PI task consistently outperforms the PD task across all architectures

	PI acrhitecture							PD architecture					
	Linear			MLP			MLP-Mixer			Transformer			
Task	PD	PI	Gain(%)	PD	PI	Gain(%)	PD	PI	Gain(%)	PD	PI	Gain(%)	
ETTh1	0.408	0.408	+0.0	0.418	0.407	+2.6	0.420	0.409	+2.6	0.425	0.415	+2.4	
ETTh2	0.343	0.338	+1.5	0.361	0.334	+7.5	0.365	0.341	+6.6	0.353	0.342	+3.1	
ETTm1	0.359	0.358	+0.2	0.356	0.355	+0.3	0.354	0.352	+0.6	0.350	0.350	+0.0	
ETTm2	0.254	0.243	+0.4	0.258	0.253	+1.9	0.259	0.253	+2.3	0.274	0.256	+6.6	
Average	0.342	0.340	+0.3	0.348	0.337	+3.2	0.350	0.339	+3.1	0.351	0.341	+2.8	

(2) Comparison with PatchTST in terms of the # of params & training/inference time

- Dataset: ETTm2

	Self-supervised settings						
	PatchTST	PITS					
	1 40011 5 1	w/o CL	w/ CL	w/ hier. CL			
Number of params	406,028	5,772					
Pretrain time (min)	77	15	17	25			
Inference time (sec)	7.5		3.3				
Avg. MSE	0.274	0.253	0.252	0.244			

(3) Robustness to distribution shift

- (Left) 98 toy TS exhibiting varying degrees of distribution shift by changing slope & amplitude
- (Right) MSE difference (= MSE of PD task MSE of PI task) of 98 datasets
- (4) Robustness to patch size

Dataset: ETTh1 MLP + PI task 0.445 ົຂ 0.440 --- MLP + PD task → Trans + PI task ₫ 0.435 --- Trans + PD task 0.430 <u> 전</u> 0.425 SF 0.420 ---o.415 م ₹ 0.410 0.405 12 16 24 32 12 4 8 Patch Size

References

- Yue, Zhihan, et al (2020). "Ts2vec: Towards universal representation of time series." In AAAI 2022
- Nie, Yugi, et al. (2023) "A time series is worth 64 words: Long-term forecasting with transformers." In ICLR 2023