

Towards Calibrated Robust Fine-Tuning of Vision-Language Models

Changdae Oh^{1,2} Mijoo Kim^{1,3} Hyesu Lim^{1,4} Junhyeok Park^{1,4} Euiseog Jeong^{1,5} Zhi-Qi Cheng¹ Kyungwoo Song⁶

Workshop on Distribution Shifts: New Frontiers with Foundation Models Fri 15 Dec, 10 a.m. EST (Room R06-R09)

Robust fine-tuning

 \circ Adapting large-scale pre-trained models under distribution shifts

 Goal: good out-of-distribution (OOD) generalization as well as in-distribution (ID) generalization after fine-tuning

OOD generalization capability

Robust fine-tuning

 $_{\odot}$ Adapting large-scale pre-trained models under distribution shifts

 Goal: good out-of-distribution (OOD) generalization as well as in-distribution (ID) generalization after fine-tuning

Increasing ID adaptation trades off OOD generalization capability Adapting on ID data while securing OOD generalization capability

Fig source: Finetune like you pretrain: Improved finetuning of zero-shot vision models, Goyal et al. 2023

between ID and OOD generalization

• There is another crucial aspect of model evaluation: *confidence calibration*

How well does the confidence output by our model match the accuracy?

$$\text{ECE} = \sum_{m=1}^{M} \frac{|B_m|}{n} \bigg| \operatorname{acc}(B_m) - \operatorname{conf}(B_m)$$

expected calibration error

• There is another crucial aspect of model evaluation: *confidence calibration*

There have been many arguments that **modern neural networks exhibit poor calibration**!

• There is another crucial aspect of model evaluation: *confidence calibration*

There have been many arguments that **modern neural networks exhibit poor calibration**!

These raise concerns about developing AI-driven decision-making systems on high-stakes tasks

Fig source: [1] Autonomous Vehicles: Legal and Regulatory Developments in the United States, Jones Day 2021 [2] The Top Applications for AI in Medical Diagnostics, George 2021

 \circ Existing works on fine-tuning have overlooked confidence calibration!

Existing works on fine-tuning have overlooked confidence calibration!

We initiate the discussion on calibration of fine-tuned foundation models under distribution shifts!

RQ1) How the calibration of a pretrained model will be affected by fine-tuning it on a specific dataset?

RQ2) Will robust fine-tunings ensure calibration of the model as well as generalization both on ID and OOD?

\circ Our findings

- Standard fine-tuning hurts the calibration of zero-shot vision models in terms of ID and especially OOD expected calibration error (ECE).
- While **SOTA robust fine-tuning method FLYP** [1] maintains ID calibration somewhat, it also **degenerates OOD calibration**.

 \circ Our findings

- Standard fine-tuning hurts the calibration of zero-shot vision models in terms of ID and especially OOD expected calibration error (ECE).
- While **SOTA robust fine-tuning method FLYP** [1] maintains ID calibration somewhat, it also **degenerates OOD calibration**.

◦ Following FLYP [1], we adopt a contrastive loss as our basic learning objective

• Goyal et al. empirically showed that fine-tuning vision-language models (VLM) with contrastive loss brings huge benefits in terms of ID adaptation and OOD generalization.

Contrastive pretraining

Finetune like you pretrain (FLYP)

• Taking inspiration from a finding that label smoothing [2] helps calibration as well as generalization [3], we first try **equipping label smoothing with contrastive loss** ($\mathcal{L}_{MCL w/ LS}$ in Figure).

 $_{\odot}$ We further propose a multimodal (self-)knowledge distillation loss (\mathcal{L}_{MKD}) which can be regarded as a form of data-dependent label smoothing [4].

figure created by Hyesu Lim

[2] Rethinking the inception architecture for computer vision, Szegedy et al. 2016[3] When Does Label Smoothing Help?, Muller et al. 2019[4] Revisiting knowledge distillation via label smoothing regularization, Yuan et al. 2020

• Taking inspiration from a finding that label smoothing [2] helps calibration as well as generalization [3], we first try equipping label smoothing with contrastive loss ($\mathcal{L}_{MCL w/LS}$ in Figure).

• We further propose a **multimodal (self-)knowledge distillation** loss (\mathcal{L}_{MKD}) which can be worked as a form of data-dependent label smoothing [4].

figure created by Hyesu Lim

[2] Rethinking the inception architecture for computer vision, Szegedy et al. 2016 [3] When Does Label Smoothing Help?, Muller et al. 2019

[4] Revisiting knowledge distillation via label smoothing regularization, Yuan et al. 2020

o Understanding multimodal knowledge distillation loss

- 1. Exponential moving average (EMA) of VLM's learning weights
 - it gradually blends a multi-domain calibrated one (pre-trained VLM) with an ID calibrated one (fine-tuned VLM)

 $\psi \leftarrow \alpha \psi + (1 - \alpha)\theta$

figure created by Hyesu Lim

[5] Calibrated ensembles can mitigate accuracy tradeoffs under distribution shift, Kumar et al. 2022[6] Robust fine-tuning of zero-shot models, Wortsman et al. 2022

Onderstanding multimodal knowledge distillation loss

- 2. Output similarity map of the EMA teacher model
 - Holds rich multimodal relation structure for each instance

 $\mathcal{L}_{\text{MKD}}(\mathcal{B}, \theta) := \sum_{i=1}^{B} [KL(\tilde{q}_i^I || q_i^I)) + KL(\tilde{q}_i^T || q_i^T)))]$

Produce data-dependent soft label that supports and regularizes the learning of student model

figure created by Hyesu Lim

- 1. During adaptation on the ID dataset, **FT** sacrifices the OOD generalization capability of pre-trained model (zero-shot CLIP) as well as ID/OOD calibration
- 2. While **WiSE-FT** [6] showcases strong OOD Acc., it significantly degenerates the calibration of the pre-trained model on ID and OOD datasets

			w/o TS		w/ TS	
Method	ID Acc. (\uparrow)	OOD Acc. (\uparrow)	ID ECE (\downarrow)	OOD ECE (\downarrow)	ID ECE (\downarrow)	OOD ECE (\downarrow)
ZS	0.6832	0.5840	0.0571	0.0836	0.0561	0.0748
FT	0.8153	0.5750	0.0884	0.2186	0.0629	0.1629
FT w/ LS	0.8223	0.5833	0.0460	0.1147	0.0481	0.1282
WiSE-FT	0.8043	0.6350	0.2129	0.1764	0.0872	0.1533
WiSE-FT w/LS	0.8068	0.6405	0.5231	0.3601	0.3382	0.2425
FLYP	0.8258	0.5946	0.0643	0.1831	0.0392	0.1217
FLYP w/ LS	0.8271	0.5975	0.0459	0.1295	0.0427	0.1145
CaRot	0.8319	0.6197	0.0395	0.1093	0.0380	0.0980

- **3. FLYP** [1] achieves strong generalization on ID and OOD, and relatively good ID calibration, but still greatly degrades the OOD calibration.
- 4. Temperature scaling (**TS**) helps calibration somewhat, but the gap between ZS OOD and fine-tuned ones still non-negligible.

			w/o TS		w/ TS	
Method	ID Acc. (\uparrow)	OOD Acc. (\uparrow)	ID ECE (\downarrow)	OOD ECE (\downarrow)	ID ECE (\downarrow)	OOD ECE (\downarrow)
ZS	0.6832	0.5840	0.0571	0.0836	0.0561	0.0748
FT	0.8153	0.5750	0.0884	0.2186	0.0629	0.1629
FT w/ LS	0.8223	0.5833	0.0460	0.1147	0.0481	0.1282
WiSE-FT	0.8043	0.6350	0.2129	0.1764	0.0872	0.1533
WiSE-FT w/LS	0.8068	0.6405	0.5231	0.3601	0.3382	0.2425
FLYP	0.8258	0.5946	0.0643	0.1831	0.0392	0.1217
FLYP w/ LS	0.8271	0.5975	0.0459	0.1295	0.0427	0.1145
CaRot	0.8319	0.6197	0.0395	0.1093	0.0380	0.0980

- **3. FLYP** [1] achieves strong generalization on ID and OOD, and relatively good ID calibration, but still greatly degrades the OOD calibration.
- 4. Temperature scaling (**TS**) helps calibration somewhat, but the gap between ZS OOD and fine-tuned ones still non-negligible.

			w/o TS		w/ TS	
Method	ID Acc. (\uparrow)	OOD Acc. (\uparrow)	ID ECE (\downarrow)	OOD ECE (\downarrow)	ID ECE (\downarrow)	OOD ECE (\downarrow)
ZS	0.6832	0.5840	0.0571	0.0836	0.0561	0.0748
FT	0.8153	0.5750	0.0884	0.2186	0.0629	0.1629
FT w/ LS	0.8223	0.5833	0.0460	0.1147	0.0481	0.1282
WiSE-FT	0.8043	0.6350	0.2129	0.1764	0.0872	0.1533
WiSE-FT w/LS	0.8068	0.6405	0.5231	0.3601	0.3382	0.2425
FLYP	0.8258	0.5946	0.0643	0.1831	0.0392	0.1217
FLYP w/ LS	0.8271	0.5975	0.0459	0.1295	0.0427	0.1145
CaRot	0.8319	0.6197	0.0395	0.1093	0.0380	0.0980

- 5. Label smoothing **(LS)** remarkably improves the calibration as well as generalization for both contrastive learning and cross-entropy-based learning.
- 6. CaRot gets superior results overall metrics ID/OOD generalization and calibration which verify the effectiveness of data-dependent LS coupled with contrastive loss.

			w/o TS		w/ TS	
Method	ID Acc. (\uparrow)	OOD Acc. (\uparrow)	ID ECE (\downarrow)	OOD ECE (\downarrow)	ID ECE (\downarrow)	OOD ECE (\downarrow)
ZS	0.6832	0.5840	0.0571	0.0836	0.0561	0.0748
FT	0.8153	0.5750	0.0884	0.2186	0.0629	0.1629
FT w/ LS	0.8223	0.5833	0.0460	0.1147	0.0481	0.1282
WiSE-FT	0.8043	0.6350	0.2129	0.1764	0.0872	0.1533
WiSE-FT w/ LS	0.8068	0.6405	0.5231	0.3601	0.3382	0.2425
FLYP	0.8258	0.5946	0.0643	0.1831	0.0392	0.1217
FLYP w/ LS	0.8271	0.5975	0.0459	0.1295	0.0427	0.1145
CaRot	0.8319	0.6197	0.0395	0.1093	0.0380	0.0980

Thank you!

https://changdaeoh.github.io/ https://www.linkedin.com/in/changdae-oh-440587215/ https://twitter.com/Changdae_Oh