

Science & Engineering of Autonomous Decision-making Systems

SEADS Lab

Jinyung Hong, Theodore P. Pavlic

School of Computing and Augmented Intelligence, Arizona State University

Representation Learning in Supervised Learning

- Learn a representation of relevant features <u>and</u> parameters characterizing corruption from "noise"
- Example: Learn a function that maps every "3" to the same value but maps "4" to another value
- Do neural representations filter out noise and preserve uncorrupted signal at DNN representation layer?
- Why is this important?
 - Transfer Learning with a few samples (representation can generalize across variations)
 - Improve robustness (separating representation and noise reduces sensitivity to noise)

γ: relevant features or signalθ: spurious features or noise

Dikkala, N., Kaplun, G. and Panigrahy, R., 2021. For manifold learning, deep neural networks can be locality sensitive hash functions. arXiv preprint arXiv:2103.06875.

- Each Label is a Manifold in High-dimensional Space
 - Input $x \in \mathbb{R}^d$ drawn from a set of manifolds with *a shared geometry*
 - Shared Geometry
 - f is an (unknown) vector-valued, bounded-norm, analytic function that maps latents γ , θ to input $x = f(\gamma, \theta)$
 - <u>Label</u> is a function g that maps γ (only) to manifold identity $y = g(\gamma)$
 - Supervised Learning Task
 - Given: m manifolds $(\gamma_1, ..., \gamma_m)$ and n samples from each (m is the number of classes)
 - Supervised learning of $g(\cdot)$: Learn to map an input x to the manifold γ it came from
- Geometric Sensitive Hashing (GSH)
 - Representations of same class cluster together (θ independence)
 - Representations of different classes are well separated (γ sensitivity)

Dikkala, N., Kaplun, G. and Panigrahy, R., 2021. For manifold learning, deep neural networks can be locality sensitive hash functions. arXiv preprint arXiv:2103.06875.

- Model Architecture for Geometric Sensitive Hashing (GSH)
 - A single-hidden-layer architecture is sufficient for a GSH:
 - $y = A \cdot B \cdot \sigma(Cx)$
 - $C \in \mathbb{R}^{D \times d}$ is non-trainable, randomly weighted matrix $(D \gg d)$
 - σ : ReLU activation function
 - $A \in \mathbb{R}^{m \times p}$, $B \in \mathbb{R}^{p \times D}$ are trainable matrices (*m* is the number of classes)
 - A, B are linear layers with no non-linearity between them
 - $y \in \mathbb{R}^m$ (one-hot encoding label)
 - Loss function and regularization: Square loss and L2 norm on A, B
 - $\mathcal{L}(A, B) = \mathbb{E}_n(||A \cdot B \cdot \sigma(Cx) y_{\text{true}}||_F^2) + \lambda_1 ||A||_F^2 + \lambda_2 ||B||_F^2$
 - Main results: DNN can provably exhibit GSH on manifold data

How that GSH can be extended to understand the manifold geometries in <u>a series of supervised learning tasks</u>?

Will manifold comparisons reflect task similarities?

Supervised Continual Learning

- \mathcal{T} tasks arrive to a learner in sequential order
- $\mathcal{D}_t = \{x_{i,t}, y_{i,t}\}_t^{n_t}$ is the dataset of task *t*, composed of n_t pairs of input and labels
 - For simplicity, C is the number of classes for every task
- Representation Learning in Supervised Continual Learning
 - Goal: <u>A function that is constant among digits with the same rotated angle but sensitive to the rotation</u> angle of digits

PROBLEM DEFINITION: GEOMETRIC SENSITIVE HASHING ACROSS MULTIPLE RELATED TASKS

• Each Task is a Manifold in High-dimensional Space

- \mathcal{T} tasks arrive to a learner in sequential order
- $\mathcal{D}_t = \{x_{i,t}, y_{i,t}\}_t^{n_t}$ is the dataset of task *t*, composed of n_t pairs of input and labels
- Each input $x_{i,t} \in \mathbb{R}^d$ drawn from a set of manifolds with a *task-specific* shared geometry
- <u>Task-specific</u> Shared Geometry
 - f is an (unknown) vector-valued bounded norm analytic function that maps latents γ^t , δ , θ^t to input $x_t = \mathbf{f}(\gamma^t, \delta, \theta^t)$
- Label is a function of γ^t , δ : $y_t = g(\gamma^t, \delta)$
- A Set of Supervised Learning Tasks
 - Given *T* manifolds (*γ*₁, ..., *γ*_T) and *n_t* samples from each task *t*, learn to map an input of the task *t* to the *task-specific* manifold it came from
 - Finding $g(\cdot)$ is the training process in continual learning setup

TASK-SPECIFIC GEOMETRIC SENSITIVE HASHING (T-GSH)

- Regardless of the associated labels:
 - Representations of any data points on the same task cluster together
 - Representations of any data points on the *different* tasks are well separated

T-GSH CONFIGURATION

- Model Architecture for Task-specific Geometric Sensitive Hashing (T-GSH)
 - Model for conventional GSH: $y = A \cdot B \cdot \sigma(Cx)$
 - Model for a **T-GSH** for task $t: y_t = \mathbf{R} \cdot B^t \cdot \sigma(C\mathbf{x}_t)$
 - σ : ReLU activation function
 - $C \in \mathbb{R}^{D \times d}$ is non-trainable, randomly weighted matrix $(D \gg d)$
 - $\mathbf{R} \in \mathbb{R}^{\mathcal{C} \times p}$ is also non-trainable, randomly weighted matrix, representing $\boldsymbol{\delta}$
 - $B^t \in \mathbb{R}^{p \times D}$ is a trainable matrix for the task t
 - **R**, *B* are linear layers with **no non-linearity** between them
 - Can leverage the Loss function and regularization of the model for GSH

EXAMPLE T-GSH: CONFIRUABLE RANDOM WEIGHTED NETWORKS (CRWN)

- Configurable Random Weighted Networks (CRWNs)
 - Simple yet efficient neuromodulation-inspired DNNs for continual learning
 - $y_t = \alpha_t \cdot \mathbf{R} \cdot (v^t \odot \sigma(C \mathbf{x}_t)) = \mathbf{R} \cdot ((\alpha_t \cdot v^t) \odot (\sigma(C \mathbf{x}_t)))$
 - $\alpha_t \in \mathbb{R}$ is a learnable constant acting as *global* neuromodulation
 - $v^t \in \mathbb{R}^D$ is a learnable vector mimicking *local* neuromodulation

Hong, J. and Pavlic, T.P., 2022. Learning to modulate random weights: neuromodulation-inspired neural networks for efficient continual learning. arXiv preprint arXiv:2204.04297.

EXPERIMENT 1-1: CRWN IS A GSH and T-GSH FUNCTION

RotationMNIST

• A total 36 tasks exist and each of which corresponds to images counterclockwise rotated by a multiple of 10 degrees

	1) CRWN is a GSH Function		2) CRWN is a T-GSH Function				
CRWNs	1) CRWN is a G Methods MTL, FC256 PSP [10], FC256 BATCHE [11], FC256 SUPSUP [12], FC256 FLYNET, 10d FLYNET, 20d FLYNET, 20d FLYNET, 30d FLYNET, 30d FLYNET, 40d NEUROMODNET, FC256 NEUROMODNET, FC256 NEUROMODNET, FC2048 NEUROMODNET, FC2048 NEUROMODNET, FC4096 CRWNs achieved ~95% test a all 36 task	SH Function R-MNIST Acc. (%) 97.18 ± 0.06 96.16 ± 0.06 89.21 ± 0.17 94.22 ± 0.03 94.18 ± 0.02 94.74 ± 0.07 94.90 ± 0.13 94.84 ± 0.10 90.59 ± 0.06 92.14 ± 0.05 93.51 ± 0.06 94.62 ± 0.08 95.49 ± 0.06 ccuracy average over	4.0 - 3.5 - 3.0 - 2.5 - 2.0 - 1.5 - 1.0 - 0.5 - 0.0 - 0.0	0.2	2) CRWN	Intra Similarity Inter Similarity 0.8 1.0	(a) A comparison of cosine similarities of the points. (Intra similarity): the cosine similarities of the points with the <i>different</i> <i>labels</i> on the <i>same task manifold</i> . (Inter similarity): the cosine similarities of the points with the <i>same label</i> on the <i>different</i> <i>task manifolds</i> . $dist(3 \sim 5, 5 \sim 5)$ is larger than $dist(3 \sim 5, 7 \sim 5)$
CRWNs -	FLYNET, 20d FLYNET, 30d FLYNET, 40d s - NEUROMODNET, FC256 NEUROMODNET, FC512 NEUROMODNET, FC1024 NEUROMODNET, FC2048 NEUROMODNET, FC4096 CRWNs achieved ~95% test a all 36 task (FlyNet: 94.9% and Neuro	94.74 ± 0.07 94.90 ± 0.13 94.84 ± 0.10 90.59 ± 0.06 92.14 ± 0.05 93.51 ± 0.06 94.62 ± 0.08 95.49 ± 0.06 ccuracy average over cs.	2.0 - 1.5 - 1.0 - 0.5 - 0.0 -	0.2	0.4 0.6 Cosine Similarity	0.8 1.0	dist (3~, so dist (3~ is larger dist (3~

Hong, J. and Pavlic, T.P., 2022. Learning to modulate random weights: neuromodulation-inspired neural networks for efficient continual learning. arXiv preprint arXiv:2204.04297.

- <u>Task-specific Shared Geometry</u>
 - f is an (unknown) vector-valued bounded norm analytic function that maps latents γ^t , δ , θ^t to input $x_t = \mathbf{f}(\gamma^t, \delta, \theta^t)$
- Can reconstruct data on the desired task manifold!
 - Finding $y_t = g(\mathbf{\gamma}^t, \boldsymbol{\delta})$ is the training process in continual learning setup
 - Because of using ReLU, inverse of the trained CRWNs can reconstruct an approximation of data

 $\bar{\mathbf{x}}_{i,t} = \mathbf{f}(\mathbf{s})$ where $\mathbf{s} \sim \mathcal{N}(\mu_{i,t}, \sigma_{i,t}), \mu_{i,t} = R_i^{\top} \odot (\alpha_t \cdot v_t), \sigma_{i,t} = \mathbf{1}_D \cdot 1/D$

(Top Row) Reconstructed samples of digit "3". (Bottom Row) Reconstructed samples of digit "1". (Left Column) Reconstructed samples of digits from the task manifold T1, which is 0° rotation. (Middle Column) the samples of digits from the task manifold T5, which is 40 °counterclockwise rotation. (Right Column) the samples of digits from the task manifold T10, which is 90 °counterclockwise rotation.

EXPERIMENT 2-1: MEASURING REPRESENTATIONAL SIMILARITIES ON ROTATIONMNIST TASKS

- Configurable Random Weighted Networks (CRWNs)
 - $y_t = \mathbf{R} \cdot ((\alpha_t \cdot v^t) \odot \sigma(C \mathbf{x}_t))$
 - $\alpha_t \in \mathbb{R}$ is a learnable constant acting as *global* neuromodulation
 - $v^t \in \mathbb{R}^D$ is a learnable vector mimicking *local* neuromodulation
 - $y_t = \mathbf{R} \cdot (c_t \odot \sigma(C \mathbf{x}_t))$
 - $c_t \triangleq \alpha_t \cdot v^t$ is called a context vector

The learned task manifolds can represent the relationships between the tasks!

Context-vector comparison across 36 tasks

A confusion matrix of intra (same task manifold) VS inter (different task manifolds) cosine similarity of task representations trained on *RotationMNIST*. Cosine similarity between task context vectors before (left)
 and after training (right).

EXPERIMENT 2-2: MEASURING REPRESENTATIONAL SIMILARITIES ON AUGMENTMNIST TASKS

AugmentMNIST

- A sequence of 8 off-the-shelf, commonly used data-augmentation tasks
- After training on each of the 8 tasks, use *hierarchical agglomerative clustering* to sort the task context vectors so that adjacent tasks tend to have highest similarity

Representational differences reflect <u>fundamental relationships</u> between tasks

• Key Results:

- Proposed T-GSH, an extension of GSH, to understand the manifold geometries in a *series* of supervised learning tasks
- Used T-GSH to connect neuromodulation-inspired neural networks for continual learning and task-specific geometric manifold learning
 - Closing a gap between representational learning and neuroscience
- Demonstrated that each of the learned task manifolds can represent (possibly unappreciated) relationships between the tasks based on them

Future Research Directions

• Enhance theoretical support for learning in various continual-learning setups, such as *class-incremental* and *domain-incremental* learning

Thank you so much ③

UniReps Workshop Unifying Representations in Neural Models

DISCOVER | DEVELOP | DELIVER

Science & Engineering of Autonomous Decision-making Systems

SEADS Lab

Randomly Weighted Neuromodulation in Neural Networks Facilitates Learning of Manifolds Common Across Tasks

> Jinyung Hong¹ Theodore P. Pavlic^{1,2} ¹School of Computing and Augmented Intelligence ²School of Life Sciences Arizona State University Tempe, AZ 85281 { jhong53, tpavlic }@asu.edu

jhong53@asu.edu

Google Scholar My Webpage
...Questions?