

Details on our MedFM Challenge Results

Dr. Adrian Krenzer, Amar Hekalo, Marcel Roth, Micha Nowak, Prof. Dr. Frank Puppe Julius-Maximilians-Universität Würzburg Department of Artificial Intelligence and Knowledge Systems 15.12.2023

1.Introduction and Challenge Overview:

- 1. Emphasis on foundation models in medical imaging, addressing challenges with limited highquality annotated datasets.
- 2. Three tasks: Thoracic Disease Screening, Pathological Tumor Tissue Classification, Lesion Detection in Colonoscopy Images.

2.Methodology:

- 1. Split into exploratory data analysis, preprocessing, data augmentation, model training, and ensemble strategies.
- 2. Discussion on various models used, including Vision Transformers and ResNets.
- 3. In-depth look at data augmentation techniques for different tasks.

3.Results:

UNIVERSITÄT WÜRZBURG

- 1. Performance of various models across tasks.
- 2. Analysis of results using metrics like AUC, Accuracy, and Aggregate Score.
- 3. Demonstrated the benefits of ensemble models and fine-tuning strategies.

4.Conclusion:

- 1. Emphasizes learning experience and the effectiveness of ensemble models.
- 2. Highlights the importance of grid search in optimizing models and strategies.

MedFM Challenge:

Focus: Participation in the prestigious MedFM Challenge 2023.

Challenge Relevance: Addresses the scarcity of high-quality, annotated medical imaging datasets.

Main Objectives: Enhancing foundation models for medical image analysis.

Key Tasks: Involves Thoracic Disease Screening, Pathological Tumor Tissue Classification, and Lesion Detection in Colonoscopy Images.

Methodology

- **1.Exploratory Data Analysis**: Initial assessment of datasets to understand characteristics and challenges.
- **2.Data Preprocessing**: Techniques to clean and standardize the data for model input.
- **3.Data Augmentation**: Application of various augmentation strategies to enhance dataset diversity.
- **4.Model Selection and Training**: Discussion of models like Vision Transformers and ResNets, and their training approaches.

JNIVERSITÄT NÜRZBURG

Data

Tumor	No Tumor	Tumor	polyp	No Finding	No Finding	pleural_effusion , pneumothorax	hilar_enlargement , thickened_pleura , pneumothorax
No Tumor	No Tumor	No Tumor	polyp	erosion	No Finding	cardiomegaly , hilar_enlargement	No Finding
No Tumor	Tumor	No Tumor	polyp	erosion	No Finding	R	
	and a			1-14 C			
Colon: 5656	5 images (9.5	GB)	Endo: 1811	images (2.7	GB)	Chest: 2141 image	es (2.6 GB)
2 classes			4 classes		19 class	es	

Data augmentation colon

- **1.Dataset Overview**: Uses the Colon dataset, divided into 2 categories for tumor tissue classification.
- **2.Augmentation Process**: Implements random resized crops and horizontal/vertical flips to enhance robustness.
- **3.ColorJitter Augmentation**: Adjusts image brightness, contrast, color saturation, and hue to improve classification accuracy.
- **4.Data Loading Configurations**: Varies in batch size and pipeline across training, validation, and testing phases for optimal performance.

Histogram of images per slide

14.12.23

Data augmentation Endo

- **1.Dataset and Challenge**: Focuses on the Endoscopy dataset with four classes, addressing challenges from specular reflections.
- **2.Adaptive-RPCA Implementation**: Utilizes Adaptive-RPCA for identifying and removing reflections, enhancing image clarity for classification.
- **3.Training Data Augmentation**: Applies random resized cropping and horizontal/vertical flips to enhance model generalization.
- **4.Data Processing and Loading**: Simplified testing data processing with consistent resizing, and tailored data loading configurations for training and validation.

Application of Adaptive-RPCA on a selection of endoscopic images

Data augmentation Chest

- **1.Dataset and Preprocessing**: Utilizes the Chest dataset with 19 classes; RGB images normalized using specific means and standard deviations.
- **2.Training Augmentation**: Incorporates random affine transformations, resizing, and horizontal flips, with crop scales tailored to the model.
- **3.Testing Process**: Simplifies augmentation, resizing images to specific resolutions, with a focus on model evaluation.
- **4.Optimization**: Employs a hyperparameter grid-search to determine optimal training batch sizes and randomization seeds for each model.

Models

- **1.Vision Transformer (ViT)**: Transforms images into sequences of patches for analysis, excelling at capturing long-range dependencies through self-attention.
- **2.Visual Prompt Tuning (VPT)**: Fine-tunes pre-trained transformer models using visual prompts, optimizing efficiency by learning only the prompt's embedding.
- **3.ResNet**: Employs skip connections to overcome gradient issues in deep learning, allowing for efficient learning and rapid hyperparameter iteration.
- **4.Swin Transformer**: Enhances ViT with a hierarchical approach and sliding window self-attention, offering better efficiency and scalability, especially in Swin V2.

Hyperparmeter optimization

```
BASE_PARAMS_CONFIG = {
    'model': ["clip-b_vpt", "dinov2-b_vpt", "eva-b_vpt", "swin-b_vpt",
    "swinv2-b", "vit-b_vpt"],
    'dataset': ["chest", "colon", "endo"],
    'shot': [1, 5, 10],
    'exp_num': [1, 2, 3, 4, 5],
    'lr': [1e-6, 1e-7, 1e-8],
    'train_bs': [2, 4, 6, 8]
    ]
```


Ensemble technics

- 1. Expert-per-Task: Selects the top model for each task/setting.
- 2. Expert-per-Class: Chooses top model for each class in a task/setting.
- 3. Weighted: Assigns weights to top-k models per class, normalized before combining predictions.
- **4. Performance-Difference-Weighted**: Weights models based on performance difference from the lowest performer.
- 5. Performance-Difference-Log-Weighted: Similar to above but with log scaling.
- **6. Weighted-Expert-per-Class**: Builds on weighted strategy with optional scaling; normalization on final predictions.
- 7. Log-Weighted-Expert-per-Class: Uses log scaling on the weighted-expert-per-class strategy.
- 8. Expo-Weighted-Expert-per-Class: Applies exponential scaling in the weighted-expert-per-class method.
- **9. SM-Weighted-Expert-per-Class**: Incorporates softmax scaling in the weighted-expert-per-class strategy.
- **10.Rank-Based-Weighted**: Ranks models, setting weights inversely proportional to their ranks.

Ensemble Gridsearch

- **1.Model Assessment**: Evaluated 1,200 models with an average of 18.2 models per setting, leading to a top-k parameter of 20.
- **2.Unique Approaches**: Resulted in 8,190 unique approaches (45 settings x average 18.2 top-k x 10 strategies).
- **3.Structured Approach**: Implemented a timestamped directory for systematic segregation of model outputs based on task, shot, and experiment.
- **4.Selection and Application**: Adopted a grid-search-like strategy for model selection, applying the best-performing ensemble strategies from the validation set to the final submission.

Differences in ACC_metric / mAP_metric							
exp1_1-shot -	2.96	0.46	0.43	- 12.5			
exp1_5-shot -	2.62	-1.31	2.04				
exp1_10-shot -	1.31	6.46	2.39	- 10.0			
exp2_1-shot -	13.46	-4.66	1.48				
exp2_5-shot -	1.72	5.28	1.58	- 7.5			
exp2_10-shot -	1.29	-0.31	4.68				
exp3_1-shot -	2.71	1.99	0.33	5.0			
exp3_5-shot -	1.40	-0.66	1.09	- 5.0			
exp3_10-shot -	-0.14	-2.21	1.76				
exp4_1-shot -	2.55	1.20	0.76	- 2.5			
exp4_5-shot -	1.95	5.95	0.50				
exp4_10-shot -	1.98	-0.13	1.99	- 0.0			
exp5_1-shot -	1.47	0.05	0.54				
exp5_5-shot -	2.20	0.51	0.41	2.5			
exp5_10-shot -	0.39	9.59	2.21				
	colon	endo	chest				

	Differences in AUC_metric							
exp1_1-shot -	2.16	0.26	0.16	- 14				
exp1_5-shot -	0.18	-1.48	3.35					
exp1_10-shot -	0.32	3.66	4.24	- 12				
exp2_1-shot -	14.47	2.60	0.82					
exp2_5-shot -	0.64	3.29	1.81	- 10				
exp2_10-shot -	0.80	0.09	6.89					
exp3_1-shot -	2.03	5.46	2.63	- 8				
exp3_5-shot -	0.96	2.95	1.16	6				
exp3_10-shot -	0.19	-0.75	3.26	-0				
exp4_1-shot -	0.91	1.19	0.66	- 4				
exp4_5-shot -	0.66	2.61	2.46					
exp4_10-shot -	0.75	-0.99	3.83	- 2				
exp5_1-shot -	0.69	1.43	3.36					
exp5_5-shot -	1.32	2.96	2.45	- 0				
exp5_10-shot -	0.17	0.09	2.49					
	colon	endo	chest					

Results and Performance Analysis

- **1.Model Performance Metrics**: Evaluation using AUC, Accuracy, and Aggregate Score.
- **2.Comparison Across Tasks**: Analysis of model effectiveness in different tasks.
- **3.Ensemble Model Benefits**: Demonstrating improved results with ensemble strategies.
- **4.Fine-Tuning Impact**: The significance of model fine-tuning in performance enhancement.

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

model	shot	AUC-Acc	AUC	Acc
convnext-v2-b	1-shot	76.340726	80.486287	72.195166
convnext-v2-b	10-shot	94.368138	97.469795	91.266467
convnext-v2-b	5-shot	89.386615	93.324950	85.448270
resnet101-CSRA	1-shot	82.332940	85.415590	79.250287
resnet101-CSRA	10-shot	94.494678	97.241228	91.748126
resnet101-CSRA	5-shot	90.814232	93.917209	87.711257
$swin-b_vpt$	1-shot	78.045265	83.389229	72.701312
$swin-b_vpt$	10-shot	96.832200	98.822100	94.842200
$swin-b_vpt$	5-shot	94.013033	98.007867	90.018200
swinv2-b	1-shot	84.573043	90.568157	78.577936
swinv2-b	10-shot	95.782956	98.972222	92.593711
swinv2-b	5-shot	92.548450	96.931593	88.165314

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

model	shot	AUC-Acc	AUC	Acc
convnext-v2-b	1-shot	76.340726	80.486287	72.195166
convnext-v2-b	10-shot	94.368138	97.469795	91.266467
convnext-v2-b	5-shot	89.386615	93.324950	85.448270
resnet101- $CSRA$	1-shot	82.332940	85.415590	79.250287
resnet101-CSRA	10-shot	94.494678	97.241228	91.748126
resnet101-CSRA	5-shot	90.814232	93.917209	87.711257
$swin-b_vpt$	1-shot	78.045265	83.389229	72.701312
swin-b_vpt	10-shot	96.832200	98.822100	94.842200
$swin-b_vpt$	5-shot	94.013033	98.007867	90.018200
swinv2-b	1-shot	84.573043	90.568157	78.577936
swinv2-b	10-shot	95.782956	98.972222	92.593711
swinv2-b	5-shot	92.548450	96.931593	88.165314

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

model	shot	AUC-Acc	AUC	Acc
convnext-v2-b	1-shot	76.340726	80.486287	72.195166
convnext-v2-b	10-shot	94.368138	97.469795	91.266467
convnext-v2-b	5-shot	89.386615	93.324950	85.448270
resnet101-CSRA	1-shot	82.332940	85.415590	79.250287
resnet101-CSRA	10-shot	94.494678	97.241228	91.748126
resnet101-CSRA	5-shot	90.814232	93.917209	87.711257
$swin-b_vpt$	1-shot	78.045265	83.389229	72.701312
$swin-b_vpt$	10-shot	96.832200	98.822100	94.842200
$swin-b_vpt$	5-shot	94.013033	98.007867	90.018200
swinv2-b	1-shot	84.573043	90.568157	78.577936
swinv2-b	10-shot	95.782956	98.972222	92.593711
swinv2-b	5-shot	92.548450	96.931593	88.165314

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

model	shot	AUC-Acc	AUC	Acc
convnext-v2-b	1-shot	76.340726	80.486287	72.195166
convnext-v2-b	10-shot	94.368138	97.469795	91.266467
convnext-v2-b	5-shot	89.386615	93.324950	85.448270
resnet101- $CSRA$	1-shot	82.332940	85.415590	79.250287
resnet101- $CSRA$	10-shot	94.494678	97.241228	91.748126
resnet101-CSRA	5-shot	90.814232	93.917209	87.711257
$swin-b_vpt$	1-shot	78.045265	83.389229	72.701312
$swin-b_vpt$	10-shot	96.832200	98.822100	94.842200
swin-b vpt	5-shot	94.013033	98.007867	90.018200
swinv2-b	1-shot	84.573043	90.568157	78.577936
swinv2-b	10-shot	95.782956	98.972222	92.593711
swinv2-b	5-shot	92.548450	96.931593	88.165314

model	shot	AUC-mAP	AUC	mAP
resnet101-CSRA	1-shot	36.201033	55.211860	17.190204
resnet101-CSRA	10-shot	41.102515	60.542692	21.662354
resnet101-CSRA	5-shot	40.259908	59.399269	21.120550
$swin-b_vpt$	1-shot	37.887900	58.086800	17.688900
$swin-b_vpt$	10-shot	40.895092	61.337317	20.452883
$swin-b_vpt$	5-shot	40.476100	60.760660	20.191500
swinv2-b	1-shot	38.649044	58.041118	19.256985
swinv2-b	10-shot	49.042674	68.695778	29.389556
swinv2-b	5-shot	42.768421	62.754743	22.782114

Table 2: Performance results of a selection of our best-performing models on the endoscopic image analysis task.

model	shot	AUC-mAP	AUC	mAP
resnet101-CSRA	1-shot	36.201033	55.211860	17.190204
resnet101-CSRA	10-shot	41.102515	60.542692	21.662354
resnet101-CSRA	5-shot	40.259908	59.399269	21.120550
$swin-b_vpt$	1-shot	37.887900	58.086800	17.688900
$swin-b_vpt$	10-shot	40.895092	61.337317	20.452883
$swin-b_vpt$	5-shot	40.476100	60.760660	20.191500
swinv2-b	1-shot	38.649044	58.041118	19.256985
swinv2-b	10-shot	49.042674	68.695778	29.389556
swinv2-b	5-shot	42.768421	62.754743	22.782114

Table 2: Performance results of a selection of our best-performing models on the endo-
scopic image analysis task.

model	shot	AUC-mAP	AUC	mAP
resnet101-CSRA	1-shot	36.201033	55.211860	17.190204
resnet101-CSRA	10-shot	41.102515	60.542692	21.662354
resnet101-CSRA	5-shot	40.259908	59.399269	21.120550
$swin-b_vpt$	1-shot	37.887900	58.086800	17.688900
$swin-b_vpt$	10-shot	40.895092	61.337317	20.452883
$swin-b_vpt$	5-shot	40.476100	60.760660	20.191500
swinv2-b	1-shot	38.649044	58.041118	19.256985
swinv2-b	10-shot	49.042674	68.695778	29.389556
swinv2-b	5-shot	42.768421	62.754743	22.782114

Table 2: Performance results of a selection of our best-performing models on the endoscopic image analysis task.

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

model	shot	AUC-mAP	AUC	mAP
densenet121	1-shot	42.5952	63.0547	22.1356
densen et 121	10-shot	42.3039	63.5197	21.0881
densen et 121	5-shot	40.6961	62.5318	18.8604
swinv2-b	1-shot	38.0050	58.8893	17.1206
swinv2-b	10-shot	47.6696	68.8499	26.4893
swinv2-b	5-shot	46.8300	68.2585	25.4014
$\mathrm{resnet101}$	1-shot	39.8241	60.3921	19.2562
$\mathrm{resnet101}$	10-shot	49.6390	72.0935	27.1844
resnet101	5-shot	46.0372	68.7443	23.3303
efficientnetv2-s	1-shot	39.8216	60.4742	19.1689
efficientnetv2-s	10-shot	47.5157	68.4753	26.5562
efficientnetv2-s	5-shot	46.4347	68.7042	24.1653
$clip-b_vpt$	1-shot	39.080433	58.467100	19.693767
$clip-b_vpt$	10-shot	43.204700	64.367350	22.042150
$clip-b_vpt$	5-shot	47.774067	66.540733	29.007383
$dinov2-b_vpt$	1-shot	37.973650	57.284150	18.663150
$dinov2-b_vpt$	10-shot	42.399700	63.591150	21.208250
$dinov2-b_vpt$	5-shot	41.358143	62.555186	20.161129
$eva02-b_vpt$	1-shot	36.286150	56.385100	16.187250
$eva02-b_vpt$	10-shot	40.685300	61.088350	20.282250
$eva02-b_vpt$	5-shot	39.248550	60.477550	18.019500
$swin-b_vpt$	1-shot	38.177986	57.733214	18.622743
$swin-b_vpt$	10-shot	45.386900	66.872100	23.901700
$swin-b_vpt$	5-shot	42.426650	63.928450	20.924800
$vit-b_vpt$	1-shot	39.294200	59.060600	19.527700
$vit-b_vpt$	10-shot	44.048400	65.015900	23.080800
vit-b_vpt	5-shot	41.416600	62.775200	20.058100

Table 3: Performance results of a selection of our best-peforming models on the thoracic disease screening task.

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

model	shot	AUC-mAP	AUC	mAP
densenet121	1-shot	42.5952	63.0547	22.1356
densen et 121	10-shot	42.3039	63.5197	21.0881
densen et 121	5-shot	40.6961	62.5318	18.8604
swinv2-b	1-shot	38.0050	58.8893	17.1206
swinv2-b	10-shot	47.6696	68.8499	26.4893
swinv2-b	5-shot	46.8300	68.2585	25.4014
${ m resnet101}$	1-shot	39.8241	60.3921	19.2562
resnet101	10-shot	49.6390	72.0935	27.1844
resnet101	5-shot	46.0372	68.7443	23.3303
efficientnetv2-s	1-shot	39.8216	60.4742	19.1689
efficientnetv2-s	10-shot	47.5157	68.4753	26.5562
efficientnetv2-s	5-shot	46.4347	68.7042	24.1653
$clip-b_vpt$	1-shot	39.080433	58.467100	19.693767
$clip-b_vpt$	10-shot	43.204700	64.367350	22.042150
$clip-b_vpt$	5-shot	47.774067	66.540733	29.007383
$dinov2-b_vpt$	1-shot	37.973650	57.284150	18.663150
$dinov2-b_vpt$	10-shot	42.399700	63.591150	21.208250
$dinov2-b_vpt$	5-shot	41.358143	62.555186	20.161129
$eva02-b_vpt$	1-shot	36.286150	56.385100	16.187250
$eva02-b_vpt$	10-shot	40.685300	61.088350	20.282250
$eva02-b_vpt$	5-shot	39.248550	60.477550	18.019500
$swin-b_vpt$	1-shot	38.177986	57.733214	18.622743
$swin-b_vpt$	10-shot	45.386900	66.872100	23.901700
$swin-b_vpt$	5-shot	42.426650	63.928450	20.924800
$vit-b_vpt$	1-shot	39.294200	59.060600	19.527700
$vit-b_vpt$	10-shot	44.048400	65.015900	23.080800
$vit-b_vpt$	5-shot	41.416600	62.775200	20.058100

Table 3: Performance results of a selection of our best-peforming models on the thoracic disease screening task.

14.12.23

Julius-Maximilians-UNIVERSITÄT WÜRZBURG

model	shot	AUC-mAP	AUC	mAP	
${ m densenet121}$	1-shot	42.5952	63.0547	22.1356	
densenet121	10-shot	42.3039	63.5197	21.0881	
densen et 121	5-shot	40.6961	62.5318	18.8604	
swinv2-b	1-shot	38.0050	58.8893	17.1206	
swinv2-b	10-shot	47.6696	68.8499	26.4893	
swinv2-b	5-shot	46.8300	68.2585	25.4014	
resnet101	1-shot	39.8241	60.3921	19.2562	
${ m resnet101}$	10-shot	49.6390	72.0935	27.1844	
resnet101	5-shot	46.0372	68.7443	23.3303	
efficientnetv2-s	1-shot	39.8216	60.4742	19.1689	
efficientnetv2-s	10-shot	47.5157	68.4753	26.5562	
efficientnetv2-s	5-shot	46.4347	68.7042	24.1653	
$clip-b_vpt$	1-shot	39.080433	58.467100	19.693767	
$clip-b_vpt$	10-shot	43.204700	64.367350	22.042150	
$clip-b_vpt$	5-shot	47.774067	66.540733	29.007383	
$dinov2-b_vpt$	1-shot	37.973650	57.284150	18.663150	
$dinov2-b_vpt$	10-shot	42.399700	63.591150	21.208250	
$dinov2-b_vpt$	5-shot	41.358143	62.555186	20.161129	
$eva02-b_vpt$	1-shot	36.286150	56.385100	16.187250	
$eva02-b_vpt$	10-shot	40.685300	61.088350	20.282250	
$eva02-b_vpt$	5-shot	39.248550	60.477550	18.019500	
$swin-b_vpt$	1-shot	38.177986	57.733214	18.622743	
$swin-b_vpt$	10-shot	45.386900	66.872100	23.901700	
$swin-b_vpt$	5-shot	42.426650	63.928450	20.924800	
$vit-b_vpt$	1-shot	39.294200	59.060600	19.527700	
$vit-b_vpt$	10-shot	44.048400	65.015900	23.080800	
$vit-b_vpt$	5-shot	41.416600	62.775200	20.058100	

Table 3: Performance results of a selection of our best-peforming models on the thoracic disease screening task.

Conclusion

- **1.Swin Transformer V2 Efficiency**: Swin Transformer V2 demonstrated remarkable performance, highlighting its effectiveness in medical image classification tasks.
- **2.Ensemble Model Strength**: The use of ensemble strategies significantly enhanced prediction accuracy, proving their value in complex challenges.
- **3.Crucial Role of Data Preparation**: Effective data preparation played a key role in model performance, underscoring its importance.
- **4.Impact of Data Augmentation**: Data augmentation techniques were crucial in improving model robustness and generalization capabilities.