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Moore’s Law of Language Models
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Figure inspired by Microsoft Research Blog: https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/



The power of Large Language Models
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@® You

how can | save the logs of my code in a directory with date and time as the name in
python

ChatGPT
You can save the logs of your code in a directory with the current date and time as the
name using the Python "logging™ module and the "datetime ™ module. Here's an

example:

) Copy code

logging

datetime

os

logger = logging.getlLogger()
logger.setlLevel(logging.DEBUG)

current_time = datetime.datetime.now().strftime(
log_file_name =

file_handler = logging.FileHandler(os.path.join( , log_file_name))

@ vou

Let's play tic-tac-toe.

ChatGPT
Absolutely! Il be "X" and you can be "O." Here's the initial game board

markdown ) Copycode

o You

Can you write a proof of infinitude of primes, with every line that rhymes?

ChatGPT
In the realm of numbers, let's dance a prime tune,

A proof of infinitude that'll make your mind swoon.

Assume finitude, a limited prime parade,
Let's call them P1, P2, and let's not be afraid.

Multiply them all, then add one with glee,

A new number emerges, a mystery to see.

Now, this new number, let's call it N,

It's not divisible by primes, that's where we begin.

If N is prime, then our dance is complete,

A new prime emerges, our assumption's defeat.

If N's not prime, a factor we find,

A prime not in our list, a new kind.

This new prime divides N, but where does it stand?

If it's in our list, it's a contradiction so grand.

For it divides N, yet isn't a factor,

A paradox, a conundrum, a mathematical actor.

So either way, our assumption's a mess,

Prime infinity prevails, no need to guess.

In both cases, a prime outside the list,

Infinitude confirmed, our dance persists.

Thus, the proof rhymes, as numbers entwine,

An infinite prime ballet, a mathematical design.

o You

Can you draw a unicorn in tikz?

ChatGPT
Certainly! Below is a simple example of a unicorn drawn using TIkZ in LaTeX. You can

use this code in a LaTeX document to generate the unicorn:

latex ) Copy code
\documentclass[tikz, border=5mm]{standalone}
\begin{document}

\begin{tikzpicture}[line cap=round, line join=round]

% Body
\draw[fill=blue!20] (2,0) ellipse (1.5 and 1);

% Head
\draw[fill=blue!20] (0.8,2) circle (1);

% Hoxn
\draw[fill=yellow] (0.8,3.5) -- (0.6,4) -- (1,4) -- cycle;

% Eye
\draw[fill=black] (1.5,2.3) circle (0.1);

% Mane

\draw[fill=purple!60] (0.4,2.5) -- (0.8,3.5) -- (1.2,2.5) -- cycle;
\draw[fill=purple!60] (0.5,2.7) -- (0.8,3.7) -- (1.1,2.7) -- cycle;
\draw[fill=purple!60] (0.6,2.9) -- (0.8,3.9) -- (1,2.9) -- cycle;

% Tail

v Vv Vv v | -
| =

Figure from “Sparks of Artificial General Intelligence: Early experiments with GPT-4”,
arXiv preprint arXiv:2303.12712 (2023).



The surprising Power of Small Language Models

 (Canthese emergent abilities be achieved at a smaller scale?

* Qur line of work with the Phi models aims to answer this question
SLMs that achieve on par performance with models of much higher scale
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 (Canthese emergent abilities be achieved at a smaller scale?

* Qur line of work with the Phi models aims to answer this question
« SLMs that achieve on par performance with models of much higher scale
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q

phi-1(1.3B)

phi-1 =

 Specialist SLMs are possible
* What about a general model?
Python coding model with

perf. comparable to models 10x
larger trained on 100x more data

.




The surprising Power of Small Language Models

 (Canthese emergent abilities be achieved at a smaller scale?

* Qur line of work with the Phi models aims to answer this question
« SLMs that achieve on par performance with models of much higher scale
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The surprising Power of Small Language Models

 (Canthese emergent abilities be achieved at a smaller scale?

* Qur line of work with the Phi models aims to answer this question
« SLMs that achieve on par performance with models of much higher scale

.

phi-1(1.3B) phi-1.5 (1.3B)
= phi-1 & ' phi-1_5 =

Natural language model
with NL comparable to models 10x larger
trained on 30x more data and reasoning
comparable to models 50x larger.

Python coding model with
perf. comparable to models 10x
larger trained on 100x more data

phi-2 (

2.7B)

phi-2 #
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Phi-2 Performance
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Phi-2 Performance

 Gemini Nano 2 (3.25B) * Gemini Ultra

A skier slides down a frictionless slope of height 40m and length (g)
80m. What's the skier's speed at the bottom? (<)

yoso.nIN ge

The potential energy of the skier at the top of the slope is given by mgh, where m
is the mass of the skier, g is the acceleration due to gravity, and h is the height of
the slope. Since the slope is frictionless, all of the potential energy is converted
Phi-2 to kinetic energy at the bottom of the slope. The kinetic energy of the skier is
(2.7B) given by (1/2)mv*2, where v is the speed of the skier at the bottom of the slope.
Equating the potential energy and kinetic energy, we get: mgh = (1/2)mv”2.

N o° W
o° «® \ L
¥ Simplifying, we get: v*2 = 2gh
BN Phi-2 W@ Gemini Nano 2

Substituting the given values, we get:
v*2=2(9.8)(40)

v*2=784

v=28m/s

Therefore, the skier's speed at the bottom of the slope is 28 m/s.



Phi-2 Performance

e Gemini Ultra
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e Gemini Nano

Now we asked a student to give the answer and they replied (Q)
with this calculation: { )

Start: E=EmgL

End: E= (1/2)mv”"2

mgL = (1/2)mv*2
v=sqrt(2gL)=sqrt(2x9.81x80)=39.6m/s

If the student is wrong, can you correct them?

Hl Phi-2 I Gemini Nano 2
The student's calculation is incorrect because they used the wrong formula
for potential energy. The formula for potential energy is mgh, where m is the
mass of the object, gis the acceleration due to gravity, and h is the height

Phi-2 of the object.

(2.7B)
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What is the secret sauce”?




What is the secret sauce”?

1- High-Quality Training Data: Textbooks are all you need !

[1] Gunasekar, Suriya, et al. "Textbooks Are All You Need." arXiv preprint arXiv:2306.11644 (2023).
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Training Language Models for Coding

* B The Stack

3 TB of permissive code data
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import re
import typing

class Default (object) :
def _ _init_ (self, wvim: Nvim) -> None:
self._vim = vim
self._denite: typing.Optional [SyncParent

o . €€ 1 1 » ] = None
Stack dataset : “every source code in GitHub e e niamtens toing et
. int] = []
(0] Dataset Slze: 1T tOkenS self._candidates: Candidates = []
self._cursor = 0
self._entire_len = 0
self._result: typing.List[typing.Any] =
[]
self._context: UserContext = {}
self. _bufnr = -1
Random code sample from the Stack ) serf.winid = 2L
self._winrestcmd =
self._initialized = False
self._winheight = 0
self._winwidth = 0
self._winminheight = -1
False

If we have a small dataset is focused on “text-book quality educational content”, | raise

we can learn the task better, even with a smaller model.

ttern = '’
itexts: typing.List[str]

self._statusline_sources = ''
self._titlestring = "'
self._ruler = False
self._prev_action = "'



Building High-Quality Datasets

1. Filtering web data:

 GPT-4 canreliably classify documents based on “high educational value”.
* Challenge: Stack (Python) is 26B tokens (around $1M cost in 2023).
 Solution: label small fraction, then train a random forest classifier on it and use

the classifier to filter the rest.

Educational values deemed by the filter

def

import torch
import torch.nn.functional as F

High educational value Low educational value

import re
import typing

normalize(x, axis=-1):
""'"performs L2-Norm.""" class Default (object) :
num = x def __init__ (self, wvim: Nvim) -> None:
denom = torch.norm(x, 2, axis, keepdim=True)
.expand_as (x) + le-12 self._denite: typing.Optional [SyncParent]
return num / denom = None

self._selected_candidates: typing.List[int

self. _vim = vim

euclidean_dist (x, y): 1 =11

""'"Computes Euclidean distance.""" self._candidates: Candidates = []

m, n = x.size(0), y.size(0) self._cursor = 0

xx = torch.pow(x, 2).sum(l, keepdim=True). self. _entire_len = 0

expand (m, n) self._result: typing.List([typing.Any] = []
yy = torch.pow(x, 2).sum(l, keepdim=True). self._ context: UserContext = {}

self._bufnr = -1

self. winid = -1

self. _winrestcmd = "'
self._initialized = False
self. _winheight = 0

expand(m, m) .t ()

dist = xx + yy - 2 * torch.matmul(x, y.t())
dist = dist.clamp(min=1e-12) .sqgrt()

return dist

cosine_dist (x, y): self. winwidth = 0
"""Computes Cosine Distance.""" self._winminheight = -1
x = F.normalize(x, dim=1) self._is_multi = False

y = F.normalize(y, dim=1)
dist = 2 - 2 * torch.mm(x, y.t())
return dist

self._is_async = False
self._matched_pattern = "'

yosoniA g



Building High-Quality Datasets

2. Create synthetic data:

e Synthetic textbooks: teach the model coding with natural language
* 1B tokens generated with GPT-3.5
* Challenge: achieving high diversity (coding concepts, skills, level of difficulty, etc.)

and low repetition

» Solution: inject creative randomness into the prompt [

[1] Eldan, Ronen, and Yuanzhi Li. “TinyStories:
How Small Can Language Models Be and Still
Speak Coherent English?” arXiv preprint
arXiv:2305.07759 (2023).
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To begin, let us define singular and nonsingular matrices. A matrix is said to be singular if its
determinant is zero. On the other hand, a matrix is said to be nonsingular if its determinant is not
zero. Now, let's explore these concepts through examples.

Example 1: Consider the matrix A = np.array([[l, 2], [2, 4]]). We can check if this matrix is
singular or nonsingular using the determinant function. We can define a Python function, °
is_singular (A)°, which returns true if the determinant of A is zero, and false otherwise.

import numpy as np
def is_singular(A):
det = np.linalg.det (A)
if det == 0:
return True
else:;
return False

A = np.array([[1, 2], [2, 4]])
print (is_singular (A)) # True




Building High-Quality Datasets

2. Create synthetic data:
* Synthetic textbooks: teach the model coding with natural language
* 1B tokens generated with GPT-3.5

* Challenge: achieving high diversity (coding concepts, skills, level of difficulty, etc.)
and low repetition

» Solution: inject creative randomness into the prompt [

17
11 12 l
350M, 26B tokens 350M, 76B tokens 1.3B, 51-76B tokens
(135 GPU hours) (410 GPU hours) (770-1090 GPU hours)

unfiltered web data

Pass@1 accuracy (%)
on HumanEval
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Building High-Quality Datasets

2. Create synthetic data:
Synthetic textbooks: teach the model coding with natural language
1B tokens generated with GPT-3.5

Challenge: achieving high diversity (coding concepts, skills, level of difficulty, etc.)
and low repetition

Solution: inject creative randomness into the prompt

20
16 17

11 12 I
350M, 26B tokens 350M, 76B tokens 1.3B, 51-76B tokens
(135 GPU hours) (410 GPU hours) (770-1090 GPU hours)

| The Stack filtered web data + synthetic textbooks

Pass@1 accuracy (%)
on HumanEval

phi-1-base




Building High-Quality Datasets

2. Create synthetic data:

* CodeExercises: align the model to perform function completion tasks based on
natural language instructions.

* <1M exercises with 0.2B tokens generated with GPT-3.5

def valid_guessing_letters(word: str, guesses: List[str]) —-> List[str]:

Returns a list of valid guessing letters, which are letters that have not been guessed yet and
are present in the word.
Parameters:

word (str): The word to guess.
guesses (List[str]): A list of letters that have already been guessed.
Returns:

List[str]: A list of wvalid guessing letters.

valid_letters = []
for letter in word:
if letter not in guesses and letter not in valid_letters:
valid_letters.append(letter)
return valid_letters

yosoniA g



yosoniA g

Building High-Quality Datasets

2. Create synthetic data:
* CodeExercises: align the model to perform function completion tasks based on
natural language instructions.
* <1M exercises with 0.2B tokens generated with GPT-3.5
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Comparison to Prior Models

Date Model Model size Dataset size HumanEval MBPP
(Tokens) (Pass@1) (Pass@1)

2021 Jul  Codex-300M [CTJ*21] 300M 100B 13.2% -
2021 Jul Codex-12B [CTJ*"21] 12B 100B 28.8% -
2022 Mar CodeGen-Mono-350M [NPH*23] 350M o778 12.8% -
2022 Mar CodeGen-Mono-16.1B [NPH*23] 16.1B 577B 29.3% 35.3%
2022 Apr  PaLM-Coder [CND*22] 540B 780B 35.9% A7.0%
2022 Sep  CodeGeeX [ZXZ*23] 13B 850B 22.9% 24.4%
2022 Nov  GPT-3.5 [Ope23] 175B N.A. 47% -
2022 Dec  SantaCoder [ALK*23] 1.1B 2368 14.0% 35.0%
2023 Mar GPT-4 [Ope23] N.A. N.A. 67% -
2023 Apr  Replit [Rep23] 2.7B 5258 21.9% ;
2023 Apr  Replit-Finetuned [Rep23] 2.7B 525B 30.5% -
2023 May CodeGen2-1B [NHX"23] 1B N.A. 10.3% -
2023 May CodeGen2-7B [NHX"23] 7B N.A. 19.1% -
2023 May StarCoder [LAZ*23] 15.5B 1T 33.6% 52.7%
2023 May StarCoder-Prompted [LAZ*23] 15.5B 1T 40.8% 49.5%
2023 May PaLM 2-S [ADF*23] N.A. N.A. 37.6% 50.0%
2023 May ~CodeT5+ [WLG*23] 9B 528 24.2% -
2023 May CodeT5+ [WLG™23] 16B 52B 30.9% -
2023 May InstructCodeT5+ [WLG*23] 16B 52B 35.0% -
2023 Jun  WizardCoder [LXZ*23| 16B 1T 57.3% 51.8%
2023 Aug  Code Llama 34B 2.6T 53.7% 56.2%
2023 Jun  phi-1 1.3B 7B 50.6% 55.5%

yoso.nIN ge

among < 10B size models,
previous best was 30%
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What is the secret sauce”?

2- Best Practices to Scale up




yosoniA g

Scaling up

* Training Phi-1 using the “Codelextbook » CodeExercises” recipe
* Scale up from Phi-1-small (350M params) to Phi-1(1.3B params)

* Training from scratch:

Phi-1 Phi-1 Ph|1
small (12K) #training steps

N
D

humaneval- pass@l
[\ W
S ©

=
D
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Can we reuse Weights across Scales?

* Reusing weights from Phi-1-small (350M)
* Challenge: how to scale the dimensions?

1. Scaling number of layers:
* #layers: 20> 24

round_int (range (num_layers_new)/num_layers_new * num_layers_old) [1]

[1] Rae, Jack W., et al. "Scaling language models: Methods, analysis & insights from training gopher." arXiv preprint
arXiv:2112.11446 (2021).



Can we reuse Weights across Scales?

* Reusing weights from Phi-1-small (350M)
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Can we reuse Weights across Scales?

* Training Phi-1 using the “Codelextbook » CodeExercises” recipe
* Scale up from Phi-1-small (350M params) to Phi-1(1.3B params)

* Training from Phi-1-small (weight reuse (WR)):

12K 36K

N
D

humaneval- pass@l
[\ W
S ©

=
D

Phi-1 Phi-1 Phi-1
small (12K) (36K)



Can we reuse Weights across Scales?

* Reusing weights from Phi-1-small (350M)
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2. Scaling attention layer dimensions:
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Can we reuse Weights across Scales?

* Training Phi-1 using the “Codelextbook » CodeExercises” recipe
* Scale up from Phi-1-small (350M params) to Phi-1(1.3B params)

* Training from Phi-1-small (weight reuse (WR)):

Model Model Dataset HumanEval
size size (pass@1)
Code Llama 34B 2.6T 53.7
Phi-1 1.3B 7B 50.6
Phi-1 (WR + Tile) 1.3B 7B 55.5
12K

un
D

N
D

humaneval-pass@l
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o

Phi-1  Phi-1  Phi-1 WR WR+Tile WR+Tile
small (12K) (36K) (36K)  (12K) (36K)



Scaling up Phi-1.5 to Phi-2

* Better performance with weight reuse

Bl Train from scratch B WR + Tile J

+1.7-6.7%

0
Commonsense Math Language
Reasoning Understanding

—— Train from scratch
— WR + Tile

10°

train step

yosoniA g
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Conclusion

* Agood, general, SLM is achievable with
* generation and utilization of data with "textbook quality®, in contrast to
conventional web data.

* incorporation of best practices for scaling up to enhance overall

performance.
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