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Social Network

Background
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Graph Neural 
Networks (GNNs)

• Rumor Detection

• Spam Detection

• Stance Detection

• ……

Graph Adversarial Attack 

Social Network Tasks

Adversarial Samples 

Analyze Defend



• Adversarial Training  Enhance the robustness
• Augment model generalization by introducing perturbed samples 

into training data

• Depend on effective attack methods to generate adversarial samples

• Numerous attackers with diverse goals and styles
• Insufficient defense

• The aim is to reconstruct the attack policy
• Simulate various attackers

• Make use of the adversarial samples captured by social media

Motivation
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• Sequential attack samples  Inverse Reinforcement Learning 
• Deduce the unknown reward function with expert demonstrations 

• Provide explanations with linear reward functions and interpretable 
features

Motivation
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• Reconstructing interpretable attack policies in social 
networks using inverse reinforcement learning (IRL)

• C1: Expert demonstrations from diverse attackers
• Improve IRL to integrate various attack policies

• C2: Imprecise feature representation 
• Similar sample features → disparate ground true rewards

Challenges
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• We purpose MoE-BiEntIRL
• Improve maximum entropy inverse reinforcement learning (EntIRL) 

• Make use of mixture-of-experts (MoE) model (for C1)

• Introduce precise sample guidance and bidirectional update 
mechanism (for C2)

• Contributions
• Novel problem: reconstructing the attack policy with collected 

adversarial samples on social media

• Enhance IRL to handle the attack samples in social graphs

• Validate the policy reconstruction effectiveness and robustness 
enhancement
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Solution



Method
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• EntIRL[1] (locally optimal example[2,3])
• Action probability

• Linear reward function

• Loss function

• MoE policy
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Method
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• EM algorithm
• The likelihood function of complete data

• E-Step & M-Step

• Gradient ascent

• Reward Function
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Method

𝛾ikt = ቊ
1,
0,

if the 𝑡-th pair of 𝜏𝑗 is decided by the 𝑘-th expert
otherwise 

Involving sampling

Match the EntIRL loss



• Precise sample guidance
• Introduce expert structural perturbations directly during the policy 

learning early process

• Avoid the accumulated deviations in imprecise feature representation

• Bidirectional update mechanism
• Provide feedback opposite to the output of the reward function

• Ensure synchronized learning of the learner policy and the reward 
function

Method
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• Hierarchical reinforcement learning
• the source subgraph, the destination subgraph, and the node pair

• Defense with adversarial samples
• data augmentation or adversarial training

Method

11

Target model parameters Learner policy parameters

Ground truth Prediction on clean graph / perturbed graph

G1

𝑟 =?
Messages 

User

Add Edge

State 𝓖 Action G𝑖/G𝑗 State (G𝑖 , G𝑗) Action (𝑣𝑚, 𝑣n)

Reward

G2

G3 G4

G1

G2

G1

G2

Set of Subgraphs (SG)

Src SG

Dst SG SG Pair

Node Pair



• Datasets
• For rumor detection task

• Target model：
• GCN rumor detector

• Metric：the reduction in the attack loss

• Attack loss
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Experiments

Target node set

Rumor probability of node 𝑣𝑖

Ground truth

The attack loss on clean graph / after T-step attacks



• The Performance of Policy Reconstruction
• Attack methods

• PageRank, GC-RWCS[4], PR-BCD[5], AdRumor-RL[6]

• Baselines

• Apprenticeship Learning[7], EntIRL[1]
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Experiments



• The improvement of robustness 
with generated samples
• No defense (w/o Def.)

• Data augmentation with expert 
samples (EDA)

• Data augmentation with 
generated samples (DA)

• Adversarial training (AT)
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Experiments
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• MoE-BiEntIRL: a threat model to recover the graph adversarial attack 
policy against GNN model on social media
➢IRL techniques and MoE mindset

➢feature-level explanations

➢precise sample guidance and bidirectional update mechanism 

• Enhance the robustness of the target model with samples produced by 
the reconstructed policy
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Conclusion
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