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Introduction

* Background
* In real world graphs, nodes are associated with text and image information (“multimodal attributed graphs”).
* E.g., product graphs in e-commerce, picture graphs in art domain.
* Prev., we mainly focus on graphs with “text” (“text-attributed graph”).
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Introduction

* Multimodal attributed graphs

* Text, Image and Graph
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Introduction

* Multimodal attributed graphs

* Text, Image and Graph

Image
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Introduction

* Multimodal attributed graphs

* Text, Image and Graph

Graph Structure

Provide the positive semantic
relation between nodes (i.e., their
similarity).

E.g., we cannot know that this
mouse and this keyboard are co-
purchased by many users if we
only have their texts and images.

15.6” FHD Laptbp, Intel

School ckpack teens

The Angel Trials BIueto th mouse :

Wireless eyboard

product graphs



Introduction

* Multimodal attributed graphs

* Text, Image and Graph
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All three information are very important on learning on such graphs



Problem

* How we conduct node image generation on such graph?
* Application on E-commerce

Generative recommendation
What the future item “Bluetooth headset” the user \
will be interested in looks like?
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Problem

* How we conduct node image generation on such graph?
* Application on Art domain

Virtual art creation
How will be a picture titled “a man playing the piano”
looks like with 50% Monet style and 50% Van Gogh style?
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Problem

* Task: Synthesizing Images from Multimodal Attributed Graphs
* Input:
* A graph with multimodal attributes.
* The neighbors of the target node on the graph.
* Text description for the target node.
* Output:
* The image of the target node.
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Problem

* Task: Synthesizing Images from Multimodal Attributed Graphs
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Problem

* Existing works

* Image generation with conditions

» Text-to-image generation: stable diffusions
* Image-to-image generation: ControlNet, InstructPix2pix

* No work on conditioning on graphs

* Graph Neural Network
* GCN, GraphSAGE, ...
* They mainly focus on representation learning
* Cannot handle generation tasks
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Instruct G2

e Model Overview
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Instruct G2

* Stable diffusion (SD)

Text Prompt Tokens
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Instruct G2

* Graph context-conditioned stable diffusion
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Instruct G2

* How to get “Graph Prompt Tokens””?

Graph Prompt Tokens

o0ogad

1. Find relevant context from the graph.
-- Semantic PPR-based Neighbor Sampling

2. Compress graph context into tokens.
-- Graph Encoding with Text Conditions

o
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Instruct G2

* How to get “Graph Prompt Tokens””?

Graph Prompt Tokens
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1. Find relevant context from the graph.
-- Semantic PPR-based Neighbor Sampling

o

)&

Text Prompt
e.g., House in Snow

J

17



Instruct G2

* Semantic PPR-based Neighbor Sampling

Goal: Find relevant context from the graph

for target node image generation. 9
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Instruct G2

* How to get “Graph Prompt Tokens””?

Graph Prompt Tokens

o0ogad

2. Compress graph context into tokens.
-- Graph Encoding with Text Conditions
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Instruct G2

* Graph Encoding: a simple baseline

Cons:
* The neighbor feature extraction is isolated.
Goal: Compress graph context into tokens.  The extracted features are general. They should be
conditioned on our target goal (text prompt).
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Instruct G2

* Graph Encoding with Text Conditions

Selected neighbors
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Instruct G2

* Graph Encoding with Text Conditions

Target Text Prompt
e.g. “House in Snow”
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Instruct G2

* How to make the image generation controllable?

* Control the guidance weight between text and graph conditions.

* Control multiple graph guidance.



Instruct G2

e Controllable Generation

Goal: Balance the guidance weight from the text and graph.

Classifier-free guidance:

ég(zt, C) — 69(Zt, @) + S - (ég(zt, C) — Eg(zt, @))

Graph classifier-free guidance:

€9(2t,cq,cr) = €9(24, D, D) + 87 - (€0(2¢, D, cr) — €9(2¢, T, D))
+8G - (Eﬁ(ztacGacT) — Eﬂ(zta @,CT)).



Instruct G2

e Controllable Generation

Goal: Control from multiple graph conditions.

Graph classifier-free guidance:

€0(2¢,ca,or) = €9(24,D, D) + s7 - (€0(2¢, D, cr) — €9(24, D, D))
+8G - (EQ(ZtaCGaCT) — Eﬂ(zta EacT))-

Multiple graph classifier-free guidance:

€o(zt,cq,cr) = €9(2t, D, D) + s7 - (e9(2t, T, cr) — €9(2t, T, D))
+ 358 - (eo(ar, e, or) — eo(2e, B, o7)),



Experiments

 Datasets Dataset # Node # Edge
 ART500K ART500K 311,288 643,008,344
* nodes:artworks; edges: same-author, same-genre relationships. Amazon 178,890 3,131,949

Goodreads 93,475 637,210

* text: title;image: picture.

* Amazon
* nodes: products; edges: co-view relationships.
* text: title;image: picture.

* Goodreads
* nodes: books; edges: similar-book semantics.
* text: title;image: cover image

l.
FCHOES
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Experiments

 Quantitative results
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* Our model has consistently better performance than competitive baselines.
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Experiments

* Qualitative results

Ground-truth  Sampled Neighbors (a) Ours (b) Stable Diffusion (c) InstructPix2Pix

(d) ControlNet

Prompt: “Thicker fuller hair instantly thick sexum”

* Our method exhibits better consistency with the ground truth.
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Experiments

* Same text prompts with different graph conditions

Text: a man playing piano

Pablo Picasso Salvador Dali Vincent van Gogh Gustave Courbet Caravaggio Max Beckmann
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Experiments

* Ablation study on graph condition variants

ART500K Amazon Goodreads
Model CLIP score DINOv2 score CLIP score DINOv2 score CLIP score DINOvV2 score
INSTRUCTG2I 73.73 46.45 68.34 51.70 50.37 25.54
- Graph-QFormer 72.53 44.16 66.97 48.18 47.91 24.74
+ GraphSAGE 72.26 43.06 66.07 43.40 46.68 21.91
+ GAT 72.60 43.32 66.73 46.58 46.57 21.45

* InstructG2| consistently outperforms both variants.

* This demonstrates the advantage of leveraging image features on graphs and the effectiveness of our
model design.
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Experiments

* Ablation study on Graph-Qformer

ARTS500K Amazon Goodreads

Model CLIP score DINOv2 score CLIP score DINOv2 score CLIP score DINOvV2 score
INSTRUCTG2I 73.73 46.45 68.34 51.70 50.37 25.54
- Graph-QFormer 72.53 44.16 66.97 48.18 4791 24.74
+ GraphSAGE 72.26 43.06 66.07 43.40 46.68 21.91
+ GAT 72.60 43.32 66.73 46.58 46.57 21.45
IP2P w. neighbor images 65.89 33.90 63.19 40.32 47.21 21.55
SD FT w. neighbor texts 69.72 38.64 65.55 43.51 47.47 22.68

* InstructG2| with Graph-QFormer consistently outperforms both the ablated version and GNN baselines.
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Experiments
* Ablation study of Semantic PPR-based Neighbor Sampling
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* Our sampling methods effectively identify neighbor images that contribute most significantly to the

ground truth in both semantics and style.
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Experiments

* Text and graph guidance study

Graph Guidance
Text Prompt BT e
MHouse n
Wooded Area.
e As text guidance increases, the
Sampled Neighbors

generated image incorporates
more of the desired content.

* As graph guidance increases, the
generated image adopts a more
desired style.

Text Guidance
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Experiments

* Single or multiple graph guidance

Gustave Courbet

Text: a man playing piano

* When single graph guidance is
provided, the generated artwork
aligns with that artist’s style.

Pablo Picasso

* As additional graph guidance is
introduced, the styles of the two
artists blend together.
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Experiments

* Single or multiple graph guidance

My little brother
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Text: a house in the snow
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