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Introduction

• Background
• In real world graphs, nodes are associated with text and image information (“multimodal attributed graphs”).

• E.g., product graphs in e-commerce, picture graphs in art domain.

• Prev., we mainly focus on graphs with “text” (“text-attributed graph”).
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Problem
• How we conduct node image generation on such graph?

• Application on E-commerce
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Problem
• How we conduct node image generation on such graph?

• Application on Art domain
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Problem
• Task: Synthesizing Images from Multimodal Attributed Graphs

• Input: 
• A graph with multimodal attributes.
• The neighbors of the target node on the graph.
• Text description for the target node.

• Output:
• The image of the target node.
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Problem

• Task: Synthesizing Images from Multimodal Attributed Graphs



Problem

• Existing works

• Image generation with conditions
• Text-to-image generation: stable diffusions

• Image-to-image generation: ControlNet, InstructPix2pix

• No work on conditioning on graphs

• Graph Neural Network
• GCN, GraphSAGE, …

• They mainly focus on representation learning

• Cannot handle generation tasks
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InstructG2I

• Model Overview
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InstructG2I

• Stable diffusion (SD)
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InstructG2I
• Graph context-conditioned stable diffusion
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InstructG2I

• How to get “Graph Prompt Tokens”?
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InstructG2I

18

• Semantic PPR-based Neighbor Sampling

Goal: Find relevant context from the graph 
for target node image generation.

Step1: Structure relevance with Personalized 
Page Rank (PPR).

Step2: Semantic relevance with content 
similarity calculation.



InstructG2I

• How to get “Graph Prompt Tokens”?
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InstructG2I

• Graph Encoding: a simple baseline
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Cons:
• The neighbor feature extraction is isolated.
• The extracted features are general. They should be 

conditioned on our target goal (text prompt).

Selected neighbors
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InstructG2I

• Graph Encoding with Text Conditions
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InstructG2I
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• Graph Encoding with Text Conditions



InstructG2I
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• How to make the image generation controllable?

• Control the guidance weight between text and graph conditions.

• Control multiple graph guidance.



InstructG2I
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• Controllable Generation

Goal: Balance the guidance weight from the text and graph.

Classifier-free guidance:

Graph classifier-free guidance:



InstructG2I

25

• Controllable Generation

Goal: Control from multiple graph conditions.

Graph classifier-free guidance:

Multiple graph classifier-free guidance:



Experiments

• Datasets
• ART500K

• nodes: artworks; edges: same-author, same-genre relationships.

• text: title; image: picture.

• Amazon
• nodes: products; edges: co-view relationships.

• text: title; image: picture.

• Goodreads
• nodes: books; edges: similar-book semantics.

• text: title; image: cover image
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Experiments

• Quantitative results

• Our model has consistently better performance than competitive baselines.
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Experiments
• Qualitative results

• Our method exhibits better consistency with the ground truth.
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Experiments

• Same text prompts with different graph conditions
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Text: a man playing piano



Experiments

• Ablation study on graph condition variants

• InstructG2I consistently outperforms both variants.

• This demonstrates the advantage of leveraging image features on graphs and the effectiveness of our 
model design.
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Experiments

• Ablation study on Graph-Qformer

• InstructG2I with Graph-QFormer consistently outperforms both the ablated version and GNN baselines.
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Experiments
• Ablation study of Semantic PPR-based  Neighbor Sampling

• Our sampling methods effectively identify neighbor images that contribute most significantly to the 
ground truth in both semantics and style. 
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Experiments
• Text and graph guidance study
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• As text guidance increases, the 
generated image incorporates 
more of the desired content.

• As graph guidance increases, the 
generated image adopts a more 
desired style.



Experiments
• Single or multiple graph guidance
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Text: a man playing piano

• When single graph guidance is 
provided, the generated artwork 
aligns with that artist’s style.

• As additional graph guidance is 
introduced, the styles of the two 
artists blend together.



Experiments
• Single or multiple graph guidance
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Text: a house in the snow
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