# Towards Multi-Domain Learning for Generalizable Video Anomaly Detection

MyeongAh Cho\*

Vuing Hee University

Kyung Hee University maycho@khu.ac.kr

Taeoh Kim

NAVER Cloud taeoh.kim@navercorp.com

Minho Shim

NAVER Cloud minho.shim@navercorp.com

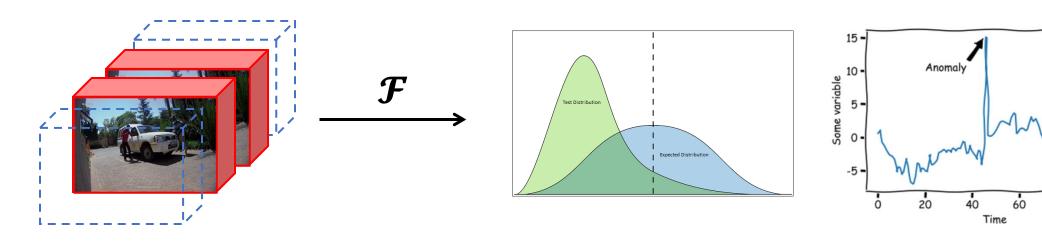
**Dongyoon Wee** 

NAVER Cloud dongyoon.wee@navercorp.com

Sangyoun Lee<sup>†</sup>

Yonsei University syleee@yonsei.ac.kr










# **Video Anomaly Detection**





| Method                        | Training data                                         | Test data                               |  |  |
|-------------------------------|-------------------------------------------------------|-----------------------------------------|--|--|
| Unsupervised Learning         | Normal videos (Unlabeled)                             | Unseen                                  |  |  |
| Weakly-supervised<br>Learning | Normal videos + Abnormal videos (video-level labeled) | Abnormal videos (frame-level detection) |  |  |



#### Introduction



#### What is the problem with the existing VAD model?

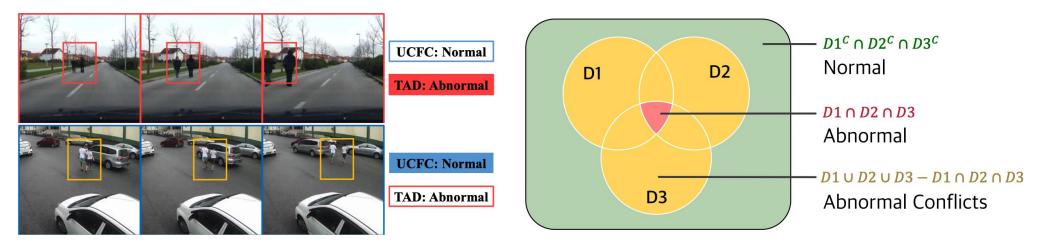
Table 2: Anomaly detection performances (Area under curve, AUC) of single-domain models. Diagonal elements are indomain results and off-diagonal elements are cross-domain results.

|        | Target |       |       |       |       |       |  |  |  |
|--------|--------|-------|-------|-------|-------|-------|--|--|--|
| Source | UCFC   | XD    | LAD   | UBIF  | TAD   | ST    |  |  |  |
| UCFC   | 82.32  | 68.06 | 75.75 | 71.12 | 73.75 | 59.24 |  |  |  |
| XD     | 68.38  | 90.87 | 77.60 | 67.23 | 71.10 | 46.87 |  |  |  |
| LAD    | 59.60  | 75.26 | 86.97 | 59.27 | 73.80 | 47.29 |  |  |  |
| UBIF   | 74.79  | 75.22 | 70.29 | 93.63 | 68.16 | 54.21 |  |  |  |
| TAD    | 50.83  | 45.38 | 52.02 | 61.95 | 90.71 | 41.58 |  |  |  |
| ST     | 55.75  | 52.87 | 48.96 | 59.00 | 48.57 | 91.88 |  |  |  |



#### Introduction




#### Why do we need a general VAD model?

- 1) A single generalized model removes the need for multiple specific models for different domains, analogous to **multi-task learning**
- 2) Proper pre-training on multiple domains embodies generalized representation, leading to better performance in unseen target domains
- 3) A general VAD model will be highly beneficial for practical scenarios

#### Introduction



#### Is it possible to create a general VAD model?



(a) Examples of Abnormal Conflict between datasets

(b) Venn diagrams of events

Figure 1: (a) An example of abnormal conflict: *Pedestrian on the road* is normal in UCFC dataset but is abnormal in TAD. (b) Each circle represents each domain. MDVAD aims to design a general model that effectively considers abnormal conflicts to separate general normal and abnormal events.



#### Goal



"Construct a general VAD model by conducting multi-domain learning while recognizing abnormal conflicts and exploring representations of general normality and abnormality"

- 1) Multiple Domain VAD, along with a benchmark and new evaluation protocols
- 2) Domain-specific multiple heads to mitigate abnormal conflicts
- 3) Abnormal Conflict (AC) Classifier to explore general features while being aware of abnormal conflicts



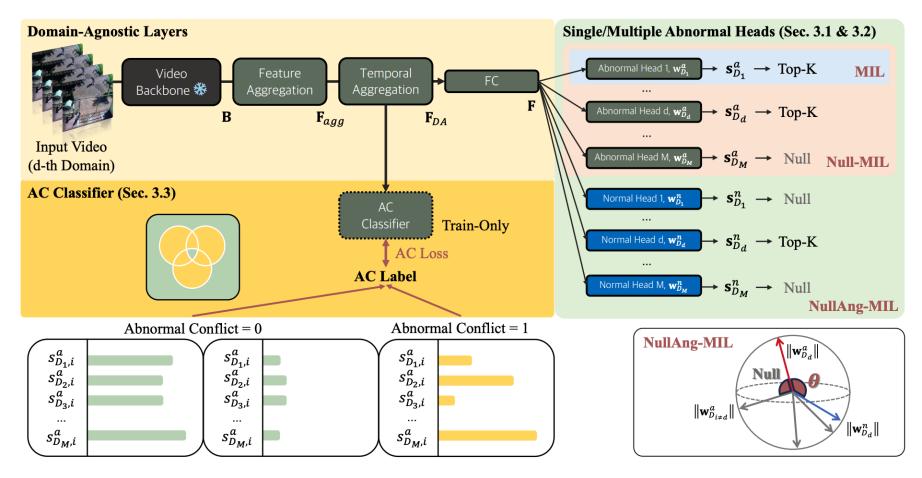
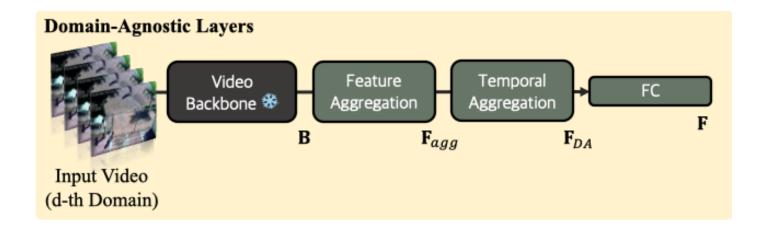
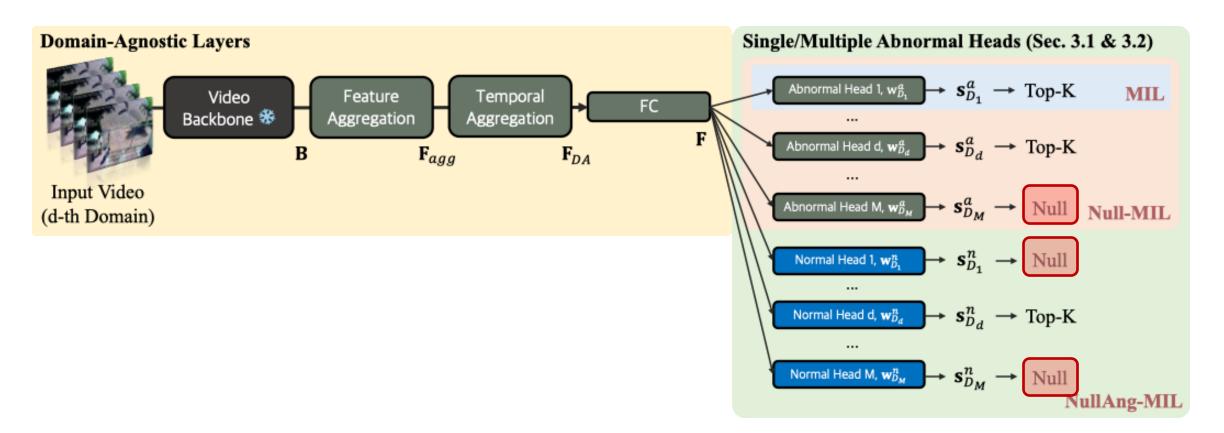
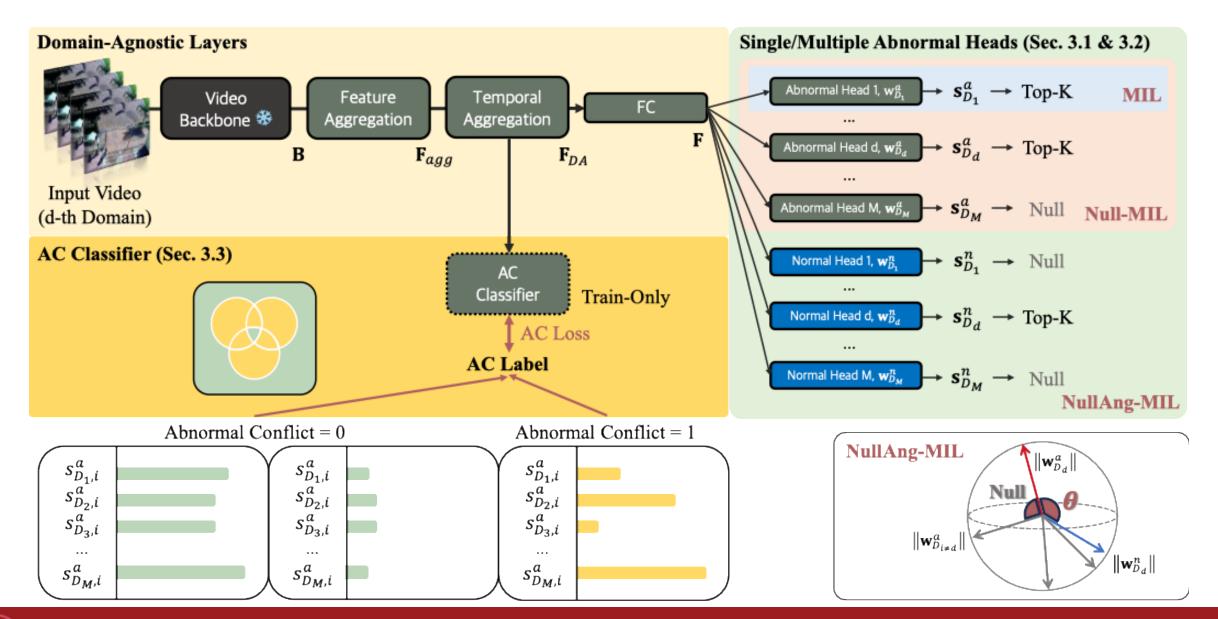
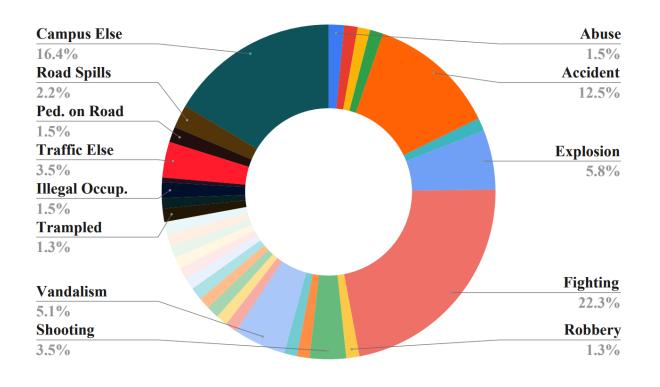





Figure 2: The overall framework of our MDVAD baselines that consists of domain-agnostic layers, single abnormal head (Sec. 3.1), multiple abnormal heads (Sec. 3.2), and AC classifier (Sec. 3.3).












#### MDVAD benchmark





# Four evaluation protocols for the MDVAD benchmark

• E1: Held-in

• E2: Leave-one-out

• E3: Low-shot adaptation

• E4: Full fine-tuning



# **Empirical studies**



Table 5: **E1:** Multi-domain training: held-in results (AUC).

| MDVAD Benchmarks |               |         |         |         |         |         |         |         |  |  |
|------------------|---------------|---------|---------|---------|---------|---------|---------|---------|--|--|
| Target           |               |         |         |         |         |         |         | Avg.    |  |  |
|                  |               | UCFC    | XD      | LAD     | UBIF    | TAD     | ST      | Avg.    |  |  |
| Single-doma      | Single-domain |         |         |         |         |         |         |         |  |  |
| Out Avg          |               | 61.39   | 63.10   | 66.83   | 66.17   | 61.90   | 49.21   | 61.43   |  |  |
| (In-domai        | n)            | (77.93) | (83.23) | (83.82) | (92.62) | (90.75) | (90.79) | (86.52) |  |  |
| E1: Held-in      | E1: Held-in   |         |         |         |         |         |         |         |  |  |
| Head             | AC            | UCFC    | XD      | LAD     | UBIF    | TAD     | ST      | Avg.    |  |  |
| МП               | _             | 80.05   | 83.77   | 86.01   | 85.76   | 88.92   | 88.82   | 85.56   |  |  |
| MIL              | ✓             | 80.11   | 83.91   | 85.15   | 87.72   | 90.05   | 87.98   | 85.82   |  |  |
| Null-MIL         | _             | 79.01   | 81.96   | 85.08   | 93.06   | 90.57   | 91.04   | 86.79   |  |  |
| (Ours)           | ✓             | 79.15   | 82.96   | 85.82   | 92.41   | 91.16   | 89.67   | 86.86   |  |  |
| NullAng          | _             | 76.32   | 82.74   | 82.32   | 92.30   | 91.82   | 91.26   | 86.13   |  |  |
| MIL(Ours)        | ✓             | 77.21   | 82.09   | 83.88   | 91.90   | 91.36   | 91.12   | 86.26   |  |  |

**Training:** All six datasets / **Testing:** Target dataset

Column-wise coloring with increased intensity for higher values

Table 6: **E2**: Leave-one-out results

| MDVAD Benchmarks |                         |       |        |              |       |       |       |  |  |  |
|------------------|-------------------------|-------|--------|--------------|-------|-------|-------|--|--|--|
|                  |                         |       | Target |              |       |       |       |  |  |  |
|                  | UCFC XD LAD UBIF TAD S' |       |        |              |       |       |       |  |  |  |
| Single-doma      | Single-domain           |       |        |              |       |       |       |  |  |  |
| Out Avg          |                         | 61.39 | 63.10  | 66.83        | 66.17 | 61.90 | 49.21 |  |  |  |
| E2: Leave-or     | E2: Leave-one-out       |       |        |              |       |       |       |  |  |  |
| Head             | AC                      |       |        |              |       |       |       |  |  |  |
| MIL              | _                       | 75.98 | 74.07  | 76.94        | 72.01 | 74.11 | 49.39 |  |  |  |
| WIIL             | ✓                       | 78.49 | 76.87  | <b>78.67</b> | 81.81 | 78.39 | 65.66 |  |  |  |
| Null-MIL         | _                       | 62.38 | 59.63  | 64.91        | 55.42 | 66.28 | 45.60 |  |  |  |
| (Ours)           | ✓                       | 68.78 | 74.65  | 74.46        | 55.61 | 67.72 | 55.26 |  |  |  |
| NullAng          |                         | 75.26 | 73.00  | 73.91        | 79.41 | 77.94 | 52.98 |  |  |  |
| MIL(Ours)        | <b>✓</b>                | 78.55 | 77.68  | 77.36        | 82.53 | 79.21 | 60.41 |  |  |  |

**Training:** Five datasets except the target dataset

**Testing:** Target dataset

# **Empirical studies**



Table 7: **E3**: Low-shot adaptation results

| MDVAD Benchmarks |                         |       |        |       |       |       |       |  |  |
|------------------|-------------------------|-------|--------|-------|-------|-------|-------|--|--|
|                  |                         |       | Target |       |       |       |       |  |  |
|                  |                         | UCFC  | XD     | LAD   | UBIF  | TAD   | ST    |  |  |
| E3: Low-sho      | E3: Low-shot Adaptation |       |        |       |       |       |       |  |  |
| Head             | AC                      |       |        |       |       |       |       |  |  |
| MIL              | _                       | 75.19 | 68.20  | 79.18 | 82.13 | 82.80 | 71.65 |  |  |
|                  | ✓                       | 72.52 | 71.00  | 76.69 | 82.34 | 78.72 | 74.88 |  |  |
| Null-MIL         | _                       | 67.55 | 60.32  | 75.11 | 75.97 | 62.29 | 57.72 |  |  |
| (Ours)           | ✓                       | 70.57 | 66.40  | 73.58 | 81.39 | 71.12 | 63.02 |  |  |
| NullAng          | _                       | 77.76 | 70.67  | 74.86 | 83.44 | 78.57 | 71.81 |  |  |
| MIL(Ours)        | <b>✓</b>                | 78.99 | 75.80  | 77.82 | 85.75 | 84.06 | 76.23 |  |  |

**Training: E2** + a few target samples

**Testing:** Target dataset

Table 8: **E4**: Comparison between the single-domain model and full fine-tuned models from the E1 and E2.

| MDVAD Benchmarks |                      |                         |       |       |       |       |  |  |  |  |
|------------------|----------------------|-------------------------|-------|-------|-------|-------|--|--|--|--|
|                  | Target               |                         |       |       |       |       |  |  |  |  |
|                  | UCFC                 | UCFC XD LAD UBIF TAD ST |       |       |       |       |  |  |  |  |
| Single-d         | Single-domain        |                         |       |       |       |       |  |  |  |  |
| Single           | 77.93                | 83.23                   | 83.82 | 92.62 | 90.75 | 90.79 |  |  |  |  |
| E4: Ful          | E4: Full fine-tuning |                         |       |       |       |       |  |  |  |  |
| E1               | 78.62                | 82.71                   | 84.41 | 92.42 | 92.50 | 91.17 |  |  |  |  |
| E2               | 80.24                | 82.77                   | 83.81 | 92.95 | 92.07 | 91.27 |  |  |  |  |

Finetuning: Target dataset / Testing: Target dataset

## **Analysis**



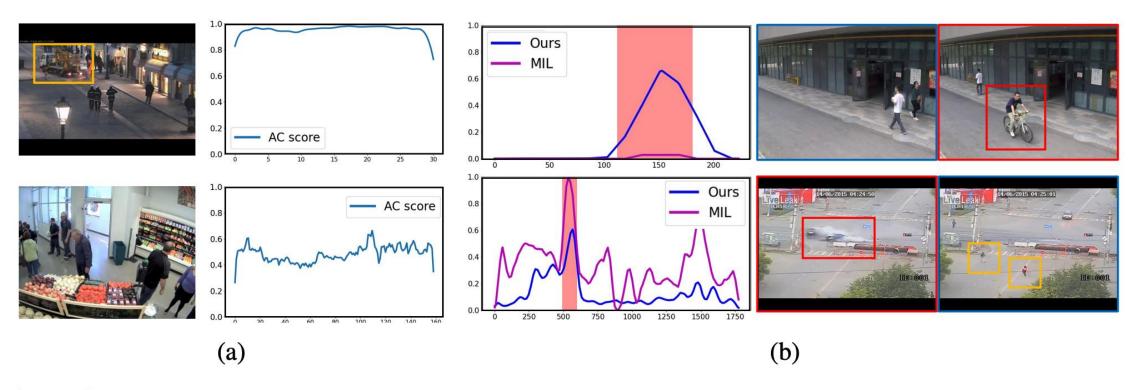



Figure 3: (a) The plot of AC scores. Both scenes are from UCFC and are normal in UCFC. (Top) Yellow box indicates abnormal conflict, which is abnormal in ST. (Bottom) Normal scene. (b) Qualitative results. Red box indicates abnormal event in the scene. (Top) Bicyclist on walkway abnormal event in ST. (Bottom) Accident abnormal event in UCFC and Pedestrian on Road abnormal conflict in TAD.

### Summary



- Introduced MDVAD: A task for generalizable VAD across multiple domains
- Proposed multi-head framework with Null(Ang)-MIL loss and AC Classifier
- Effectively addresses abnormal conflicts across domains
- Demonstrates strong results on MDVAD benchmark with diverse protocols
- Focuses on resolving multi-domain conflicts rather than single-domain architectures
- Framework compatible with various VAD models; supports future generalization research