
Continuous Relaxation Annealing: Enhancing Learning for
Combinatorial Optimization

Yuma Ichikawa 1, 2

1Fujitsu Limited 2The University of Tokyo

Introduction

Combinatorial Optimization (CO)

The objective is to find the discrete optimal value as follows:

min
x∈{0,1}N

f (x; C) subject to x ∈
{

x ∈ {0, 1}N
∣∣∣∣ ∀i ∈ [I ], gi(x; C) ≤ 0
∀j ∈ [J ], hj(x; C) = 0

}
(1)

C ∈ C represents instance-specific parameters (e.g., a graph G = (V, E)), and f : X × C → R
denotes the cost function.

Learning-Based Methods for CO Problems

Learning-based methods have gained attention as general-purpose solvers due to their ability to

learn problem-specific heuristics.

Supervised Learning (SL)-based Solvers
Method: Predict solutions for unseen instances by training on optimal solutions as supervised labels.

Challenges: Limited availability of optimal solutions in real-world settings and poor generalization.

Reinforcement Learning (RL)-based Solvers
Method: Learn a policy to solve CO problems by optimizing reward signals as feedback.

Challenges: Training is notoriously unstable due to noisy gradient estimations and the difficulty of exploration.

Unsupervised Learning (UL)-Based Solvers

Penalty Method

In UL-based solvers, Eq. (1) is redefined as an unconstrained CO problem:

min
x∈{0,1}N

l(x; C, λ), l(x; C, λ) =∆ f (x; C) +
I+J∑
i=1

λivi(x; C),

where, for all i ∈ [I + J ], v : {0, 1}N × C → R represents a penalty term that increases when

constraints are violated and λ = (λi)1≤i≤I+J ∈ RI+J denotes the penalty strengths.

∀i ∈ [I ], vi(x; C) = max(0, gi(x; C)), ∀j ∈ [J ], vj(x; C) = (hj(x; C))2.

Continuous Relaxation

UL-based solvers employ a continuous relaxation strategy as follows:

min
p∈[0,1]N

l̂(p; C, λ), l̂(p; C, λ) =∆ f̂ (p; C) +
I+J∑
i=1

λiv̂i(p; C),

where p = (pi)1≤i≤N ∈ [0, 1]N represents a set of relaxed continuous variables.

UL-Based Solvers

The relaxed vector p is parameterized by a neural network, represented as pθ. The parameters θ
are optimized by directly minimizing the following label-independent objective function:

l̂(θ; C, λ) =∆ f̂ (pθ(C); C) +
I+J∑
i=1

λiv̂i(pθ(C); C). (2)

After training, the relaxed solution pθ is converted into discrete variables using artificial rounding.

Specifically, ∀i ∈ [N ], xi = int(pθ,i(C)) [2].
In summary, UL-based solvers reformulate the CO problem in Eq. (1) as an optimization problem

over the higher-dimensional parameters θ of a neural network, analogous to kernel methods.

UL-based solvers that leverage Graph Neural Networks (GNNs) are referred to as PI-GNN [2].

Practical Issues of UL-Based Solvers

Ambiguity in Rounding

UL-based solvers often produce the half integral values 1/2, which undermines the robustness

of the existing rounding methods.

Optimization Issue

Angelini demonstrated that the PI-GNN solver falls short of achieving results comparable to

those of greedy algorithms [1].

Wang highlighted the importance of utilizing training or historical datasets, D = {Cµ}1≤µ≤P ,

which consist of various graphs, as well as initializing with outputs from greedy solvers [3].

Continuous Relaxation Annealing (CRA)

𝛾 = 0

𝛾 > 0

𝛾 < 0

Optimal 
Value

GNN

(𝟏, 𝟏)

(𝟏, 𝟎)

(𝟎, 𝟏)

(𝟎, 𝟎)
Smoothing

Smoothing 
&

Automatic
Rounding 

To balance discreteness and continuity, we introduce

the following penalty term:

r̂(θ; C, λ, γ) = l̂(θ; C, λ) + γΦ(θ; C),

Φ(θ; C) =
N∑

i=1
(1− (2pθ,i(C)− 1)α), α ∈ {2n | n ∈ N+}

where γ ∈ R is the penalty parameter, and the even

number α determines the curvature.

γ < 0: Encourages the relaxed variables to favor

continuous space, smoothing the non-convex objec-

tive function l̂(p; C, λ) due to the convexity of the

penalty term Φ(p).
γ > 0: Encourages the relaxed variables to favor

discrete space, pushing continuous solutions toward

discrete ones.

Continuous Relaxation Annealing

A technique to gradually anneal the parameter γ from a negative value to favor discreteness.

Exploration Phase (γ < 0): Promotes broad exploration by smoothing the non-convexity.

Rounding Phase: Automatically rounds relaxed variables by transforming suboptimal

continuous solutions oscillating between 1 and 0 into discrete solutions.

Early Stopping: Monitors the penalty term Φ(p) and halts training when Φ(p) ≈ 0.
Scheduling: Updates γ via γ(τ + 1)← γ(τ ) + ε, where ε is a small constant.

Experimental Setting

All experiments adopt PI-GNN [2] as the baseline method.

Architecture, Optimizer: We use the same experimental configuration described in PI-GNN

[2], employing a simple two-layer GCV and GraphSAGE.
Annealing: γ(0) = −20, with a scheduling rate of ε = 10−3 and a curve rate α = 2.
Metric: ApR is defined as ApR = f (x; C)/f (x∗; C), where x∗ denotes the optimal solution.

Experiments

We evaluate the performance of CRA-PI-GNN on benchmark problems, including MIS, MaxCut,

and DBM. Below, we focus on summarizing the results for MIS on regular random graphs as a

representative example. Similar qualitative improvements are observed for the other benchmarks.

Degree Dependency

We compare the performance of PI-GNN and CRA-PI-GNN using GCV. The following figure

shows the ApR as a function of degree d for PI-GNN and CRA-PI-GNN solvers. Across all degrees

d, CRA-PI-GNN solver consistently outperforms PI-GNN solver.

10 20 30 40 50
Degree of the RRGs (d) with 10,000 nodes

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Ap
pr

ox
im

at
io

n 
ra

te

PI-GNN
CRA-PI-GNN

10 20 30 40 50
Degree of the RRGs (d) with 20,000 nodes

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Ap
pr

ox
im

at
io

n 
ra

te

PI-GNN
CRA-PI-GNN

Overcoming Optimization Issues

Several studies [1, 3] have raised optimization concerns for UL-based solvers. However, CRA-

PI-GNN substantially outperforms heuristics such as DGA and RGA on MIS for graphs with d =
20, 100, without relying on training or historical datasets D = {Gµ}pµ=1.

Method 20-RRG 100-RRG

RGA 0.776± 0.001 0.663± 0.001
DGA 0.891± 0.001 0.848± 0.002
EGN 0.775 ([3]) –

META-EGN 0.887 ([3]) –

PI-GNN (GCV) 0.000± 0.000 0.000± 0.000
PI-GNN (SAGE) 0.745± 0.003 0.000± 0.000
CRA (GCV) 0.937± 0.002 0.855± 0.004
CRA (SAGE) 0.963± 0.001 0.924± 0.001

Computational Scaling

The computational scaling of CRA-PI-GNN solver for MIS problems on large-scale RRGs with a

node degree of 100 exhibits moderate super-linear behavior. Specifically, total computational time
scales approximately as ∼ N1.4 for GCN and ∼ N1.7 for GraphSAGE. This scaling is nearly identical
to that of PI-GNN solver [2] for problems on RRGs with lower degrees.

References

[1] Maria Chiara Angelini and Federico Ricci-Tersenghi.

Modern graph neural networks do worse than classical greedy algorithms in solving combinatorial optimization problems like maximum independent set.

Nature Machine Intelligence, 5(1):29–31, 2023.

[2] Martin JA Schuetz, J Kyle Brubaker, and Helmut G Katzgraber.

Combinatorial optimization with physics-inspired graph neural networks.

Nature Machine Intelligence, 4(4):367–377, 2022.

[3] Haoyu Wang and Pan Li.

Unsupervised learning for combinatorial optimization needs meta-learning.

arXiv preprint arXiv:2301.03116, 2023.

https://neurips.cc/ NeurIPS 2024, Vancouver, Canada ichikawa-yuma1@fujitsu.com

https://neurips.cc/
mailto:ichikawa-yuma1@fujitsu.com

