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Introduction

Combinatorial Optimization (CO)

The objective is to find the discrete optimal value as follows:

min
x∈{0,1}N

f (x; C) subject to x ∈
{

x ∈ {0, 1}N
∣∣∣∣ ∀i ∈ [I ], gi(x; C) ≤ 0
∀j ∈ [J ], hj(x; C) = 0

}
(1)

C ∈ C represents instance-specific parameters (e.g., a graph G = (V, E)), and f : X × C → R
denotes the cost function.

Learning-Based Methods for CO Problems

Learning-based methods have gained attention as general-purpose solvers due to their ability to

learn problem-specific heuristics.

Supervised Learning (SL)-based Solvers
Method: Predict solutions for unseen instances by training on optimal solutions as supervised labels.

Challenges: Limited availability of optimal solutions in real-world settings and poor generalization.

Reinforcement Learning (RL)-based Solvers
Method: Learn a policy to solve CO problems by optimizing reward signals as feedback.

Challenges: Training is notoriously unstable due to noisy gradient estimations and the difficulty of exploration.

Unsupervised Learning (UL)-Based Solvers

Penalty Method

In UL-based solvers, Eq. (1) is redefined as an unconstrained CO problem:

min
x∈{0,1}N

l(x; C, λ), l(x; C, λ) =∆ f (x; C) +
I+J∑
i=1

λivi(x; C),

where, for all i ∈ [I + J ], v : {0, 1}N × C → R represents a penalty term that increases when

constraints are violated and λ = (λi)1≤i≤I+J ∈ RI+J denotes the penalty strengths.

∀i ∈ [I ], vi(x; C) = max(0, gi(x; C)), ∀j ∈ [J ], vj(x; C) = (hj(x; C))2.

Continuous Relaxation

UL-based solvers employ a continuous relaxation strategy as follows:

min
p∈[0,1]N

l̂(p; C, λ), l̂(p; C, λ) =∆ f̂ (p; C) +
I+J∑
i=1

λiv̂i(p; C),

where p = (pi)1≤i≤N ∈ [0, 1]N represents a set of relaxed continuous variables.

UL-Based Solvers

The relaxed vector p is parameterized by a neural network, represented as pθ. The parameters θ
are optimized by directly minimizing the following label-independent objective function:

l̂(θ; C, λ) =∆ f̂ (pθ(C); C) +
I+J∑
i=1

λiv̂i(pθ(C); C). (2)

After training, the relaxed solution pθ is converted into discrete variables using artificial rounding.

Specifically, ∀i ∈ [N ], xi = int(pθ,i(C)) [2].
In summary, UL-based solvers reformulate the CO problem in Eq. (1) as an optimization problem

over the higher-dimensional parameters θ of a neural network, analogous to kernel methods.

UL-based solvers that leverage Graph Neural Networks (GNNs) are referred to as PI-GNN [2].

Practical Issues of UL-Based Solvers

Ambiguity in Rounding

UL-based solvers often produce the half integral values 1/2, which undermines the robustness

of the existing rounding methods.

Optimization Issue

Angelini demonstrated that the PI-GNN solver falls short of achieving results comparable to

those of greedy algorithms [1].

Wang highlighted the importance of utilizing training or historical datasets, D = {Cµ}1≤µ≤P ,

which consist of various graphs, as well as initializing with outputs from greedy solvers [3].

Continuous Relaxation Annealing (CRA)
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To balance discreteness and continuity, we introduce

the following penalty term:

r̂(θ; C, λ, γ) = l̂(θ; C, λ) + γΦ(θ; C),

Φ(θ; C) =
N∑

i=1
(1− (2pθ,i(C)− 1)α), α ∈ {2n | n ∈ N+}

where γ ∈ R is the penalty parameter, and the even

number α determines the curvature.

γ < 0: Encourages the relaxed variables to favor

continuous space, smoothing the non-convex objec-

tive function l̂(p; C, λ) due to the convexity of the

penalty term Φ(p).
γ > 0: Encourages the relaxed variables to favor

discrete space, pushing continuous solutions toward

discrete ones.

Continuous Relaxation Annealing

A technique to gradually anneal the parameter γ from a negative value to favor discreteness.

Exploration Phase (γ < 0): Promotes broad exploration by smoothing the non-convexity.

Rounding Phase: Automatically rounds relaxed variables by transforming suboptimal

continuous solutions oscillating between 1 and 0 into discrete solutions.

Early Stopping: Monitors the penalty term Φ(p) and halts training when Φ(p) ≈ 0.
Scheduling: Updates γ via γ(τ + 1)← γ(τ ) + ε, where ε is a small constant.

Experimental Setting

All experiments adopt PI-GNN [2] as the baseline method.

Architecture, Optimizer: We use the same experimental configuration described in PI-GNN

[2], employing a simple two-layer GCV and GraphSAGE.
Annealing: γ(0) = −20, with a scheduling rate of ε = 10−3 and a curve rate α = 2.
Metric: ApR is defined as ApR = f (x; C)/f (x∗; C), where x∗ denotes the optimal solution.

Experiments

We evaluate the performance of CRA-PI-GNN on benchmark problems, including MIS, MaxCut,

and DBM. Below, we focus on summarizing the results for MIS on regular random graphs as a

representative example. Similar qualitative improvements are observed for the other benchmarks.

Degree Dependency

We compare the performance of PI-GNN and CRA-PI-GNN using GCV. The following figure

shows the ApR as a function of degree d for PI-GNN and CRA-PI-GNN solvers. Across all degrees

d, CRA-PI-GNN solver consistently outperforms PI-GNN solver.
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Overcoming Optimization Issues

Several studies [1, 3] have raised optimization concerns for UL-based solvers. However, CRA-

PI-GNN substantially outperforms heuristics such as DGA and RGA on MIS for graphs with d =
20, 100, without relying on training or historical datasets D = {Gµ}pµ=1.

Method 20-RRG 100-RRG

RGA 0.776± 0.001 0.663± 0.001
DGA 0.891± 0.001 0.848± 0.002
EGN 0.775 ([3]) –

META-EGN 0.887 ([3]) –

PI-GNN (GCV) 0.000± 0.000 0.000± 0.000
PI-GNN (SAGE) 0.745± 0.003 0.000± 0.000
CRA (GCV) 0.937± 0.002 0.855± 0.004
CRA (SAGE) 0.963± 0.001 0.924± 0.001

Computational Scaling

The computational scaling of CRA-PI-GNN solver for MIS problems on large-scale RRGs with a

node degree of 100 exhibits moderate super-linear behavior. Specifically, total computational time
scales approximately as ∼ N1.4 for GCN and ∼ N1.7 for GraphSAGE. This scaling is nearly identical
to that of PI-GNN solver [2] for problems on RRGs with lower degrees.
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