## **Proving Theorem Recursively**

Haiming Wang<sup>1\*</sup> Huajian Xin<sup>1\*</sup> Zhengying Liu<sup>2†</sup> Wenda Li<sup>3</sup>
Yinya Huang<sup>4</sup> Jianqiao Lu<sup>5</sup> Zhicheng Yang<sup>6</sup> Jing Tang<sup>6,7</sup>
Jian Yin<sup>1†</sup> Zhenguo Li<sup>2</sup> Xiaodan Liang<sup>1,8†</sup>

<sup>1</sup>Sun Yat-sen University <sup>2</sup>Huawei Noah's Ark Lab <sup>3</sup>University of Edinburgh <sup>4</sup>CityU <sup>5</sup>HKU <sup>6</sup>HKUST (Guangzhou) <sup>7</sup>HKUST <sup>8</sup>Pengcheng Laboratory

# Neural theorem proving

• Theorems/proofs represented formally as **computer codes** !

#### Theorem



Problem statement  $\sqrt{2}$  is irrational. Proof Assuming  $\sqrt{2} \in \mathbb{Q}$ , we have  $\sqrt{2}=a/b$ , and a, b are coprime. Then we have  $2 = a^2/b^2$  and  $2 \times b^2 = a^2$ . Thus, we know *a* is even, a = 2c. Substituting a into the previous equation, we have  $b^{2} = (2 * c)^{2}$ . Thus, we know *b* is also even, and *a*, *b* are not coprime. This contradicts the original assumption.

Formal systems:





proof

qed

lemma "sqrt 2 ∉ Q"

then obtain a b::int where "sqrt 2 = a/b"

"coprime a b" "b ≠ 0" sledgehammer

then have c: "2 =  $a^2 / b^2$ "

then have \*: "2\*b^2 = a^2"

with \* have "b<sup>2</sup> = 2\*c<sup>2</sup>" sledgehammer

show False sledgehammer

Coq

then have  $"b^2 \neq 0"$  sledgehammer

then obtain c::int where "a=2\*c"

with (coprime a b) (even a) (even b)

assume "sqrt 2 ∈ Q"

sledgehammer

sledgehammer then have "even a"

sledgehammer

sledgehammer

then have "even b"

sledgehammer



Mizar

#### Sources of Theorems



Slide from Kaiyu Yang's talk: https://mathai2023.github.io/

## **Previous approaches**

### LM + Search (GPT-f, Thor, DT-Solver):

- Language model suggests action given current state.
- Formal system executes action and updates state.
- Search algorithm finds correct action path.



## Motivation

### **Challenges:**

- Step-by-step methods fail to find long proofs.
- Search space grows exponentially, leading to getting lost.
- High need for value functions to guide the search.

### Solution:

• Think like humans:

 $Plan \rightarrow Verify \rightarrow Plan \rightarrow Verify \rightarrow \dots$ 

```
theorem(in group) int_pow_pow:
  assumes "x \in carrier G"
  shows "(x [^] (n :: int)) [^] (m ::
int) = x [^] (n * m :: int)"
       >>> goal (1 subgoal): 1. (x [^] n) [^] m...
proof (cases)
         >>> goal (2 subgoals): 1. P \implies (x \dots 2 \dots
 assume n_ge: "n \geq 0" thus ?thesis
         >>> using this: 0 \le n goal (1 subgoal):...
   proof (cases)
           >>> goal (2 subgoals): 1. 0 \le n \implies \dots
      assume m_ge: "m ≥ 0" thus ?thesis
           >>> using this: 0 ≤ m goal (1 subgoal)...
       using n_ge nat_pow_pow in
t_pow_def2
             >>> Successful solve goal (m \ge 0) ...
   . . .
aed
    >>> No subgoals!
                                  Complete proof
```

## **Prove theorem recursively**



#### **First** recursive proving framework!

- Search proof sketch (plan for the proof at each stage)
- Verify the proof sketch by formal system!
- Proceed to deeper sketches after verified to be correct

## **Experiments: main results**

#### Thor (Cambridge, NeurIPS 2022)

• LM is train on single step state action pair and finds proof with best first search algorithm

#### Thor + expert iteration (Google + Cambridge, NeurIPS 2022)

• Extend Thor with extensive proof data generated by Codex LLM.

#### Thor + Magnushammer (Cambridge, ICLR 2023)

• Extend Thor with neural enhanced sledgehammer.

### **Our approaches (proofGPT-1.3B\*):**

#### **GPT-f Baseline**

• ablation setting which use step-by-step approach to prove theorem.

#### POETRY

• Our recursive proving method

Table 1: **Comparing with baseline.** The table displays the pass@1 success rates of the baselines and POETRY, The highest success rates for each set are highlighted in bold.

| Success rate                               | miniF2F-valid | miniF2F-test | PISA  | single-level | multi-level |
|--------------------------------------------|---------------|--------------|-------|--------------|-------------|
| Thor w/o sledgehammer                      | 25.0%         | 24.2%        | 39.0% | -            | -           |
| GPT-f Baseline                             | 39.3%         | 37.3%        | 48.9% | 65.5%        | 11.1%       |
| <ul> <li>with sampling decoding</li> </ul> | 30.3%         | 31.5%        | 43.2% | 57.8%        | 9.8%        |
| POETRY                                     | 42.2%         | 42.2%        | 49.6% | 65.4%        | 13.6%       |

Table 2: **Comparing with state-of-the-art search-based methods on the miniF2F dataset.** The table displays the pass@1 success rates of previous works and POETRY, The highest success rates for each set are highlighted in bold.

| Success rate                              | environment | miniF2F-valid | miniF2F-test |
|-------------------------------------------|-------------|---------------|--------------|
| Baselines                                 |             |               |              |
| PACT [Han et al., 2022]                   | Lean        | 23.9%         | 24.6%        |
| Leandojo [Yang et al., 2023]              | Lean        | -             | 26.5%        |
| FMSCL [Polu et al., 2022]                 | Lean        | 33.6%         | 29.6%        |
| COPRA [Thakur et al., 2024]               | Lean        | -             | 30.7%        |
| Thor [Jiang et al., 2022a]                | Isabelle    | 28.3%         | 29.9%        |
| Thor + expert iteration [Wu et al., 2022] | Isabelle    | 37.3%         | 35.2%        |
| Thor + Magnushammer [Mikuła et al., 2023] | Isabelle    | 36.9%         | 37.3%        |
| Ours                                      |             |               |              |
| POETRY                                    | Isabelle    | 42.2%         | 42.2%        |

\*Azerbayev, Zhangir, et al. "Proofnet: Autoformalizing and formally proving undergraduate-level mathematics." arXiv preprint arXiv:2302.12433 (2023).

## **Experiments:** analysis

### **POETRY capable of finding long proof**

- GPT-f Baseline found maximum length of 3 (10) steps in miniF2F (PISA)
- POETRY found maximum length of 18 (26) steps in miniF2F (PISA)



### **POETRY capable of finding harder proof**

- POETRY and GPT-f Baseline have similar performance in single-level problem
- POETRY excels at solving problems requires structural reasoning.



## **Experiments: case study**



### **Case comparison between POETRY and GPT-f Baseline.**

- Recursive proof found by POETRY in 71.2 seconds, the proof contains two proof levels.
- Failure-proof paths found by the GPT-f Baseline. GPT-f Baseline failed to find proof due to timeout after 600 seconds. We select two different failure proof paths found by GPT-f Baseline.

### Thanks