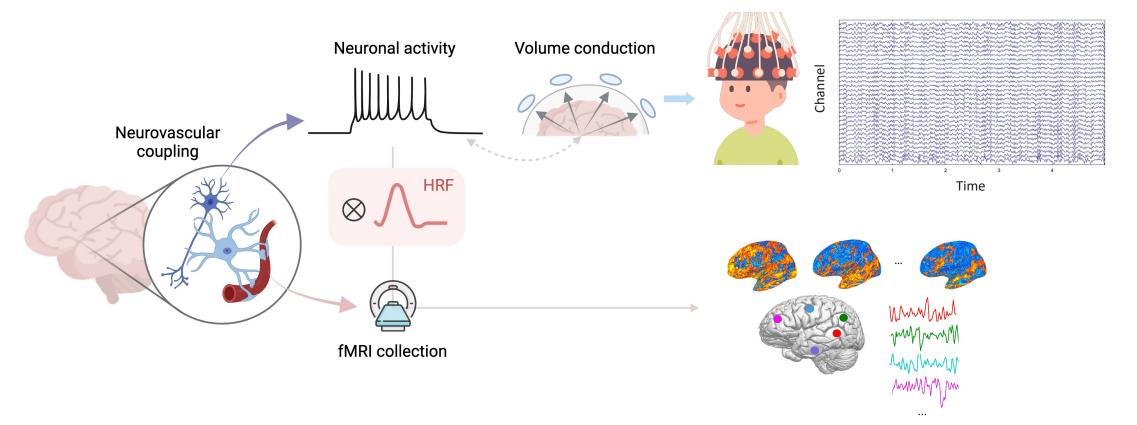


NeuroBOLT: Resting-state EEG-to-fMRI Synthesis with Multi-dimensional Feature Mapping

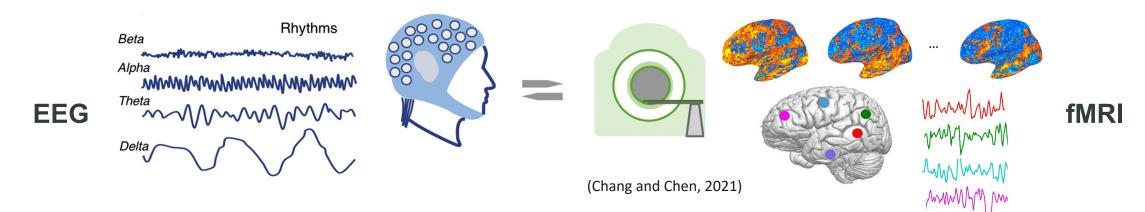
Yamin Li¹, Ange Lou¹, Ziyuan Xu¹, Shengchao Zhang¹, Shiyu Wang¹, Dario J. Englot², Soheil Kolouri¹, Daniel Moyer¹, Roza G. Bayrak¹, Catie Chang¹

¹Vanderbilt University ²Vanderbilt University Medical Center



VANDERBILT INSTITUTE FOR SURGERY AND ENGINEERING

VANDERBILT UNIVERSITY MEDICAL CENTER

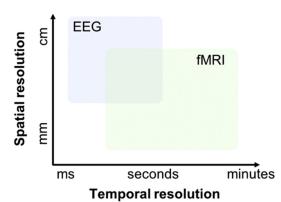

Background - EEG-fMRI

Electroencephalogram (EEG)

Functional Magnetic resonance imaging (fMRI)

Background EEG-fMRI

Pros:

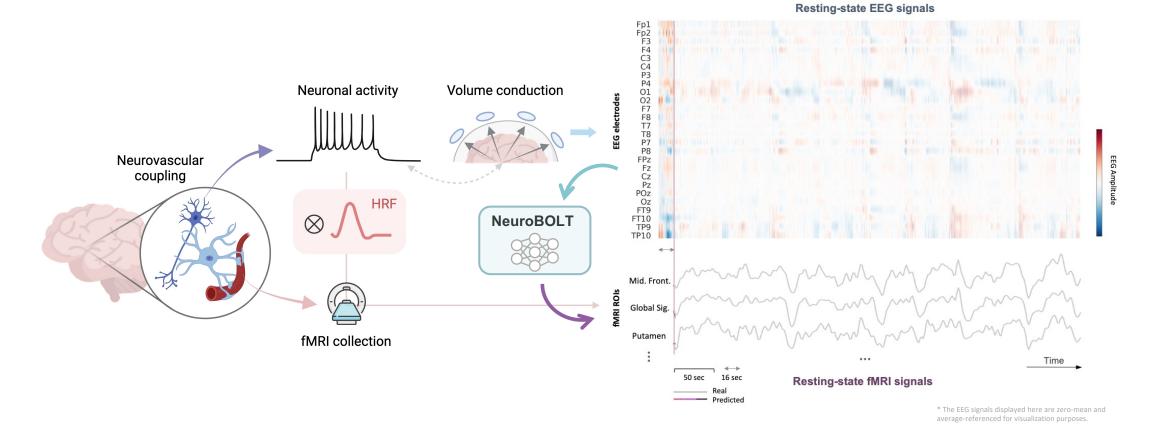

- Direct measure of brain electrical activity
- High temporal resolution
- Cheap, easy to collect
- Can be portable (Mobile EEG cap)

Cons:

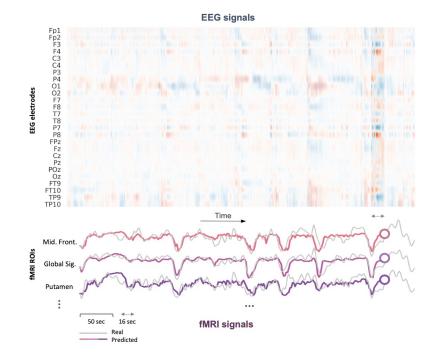
- Low spatial resolution
- Low SNR
- Limited depth

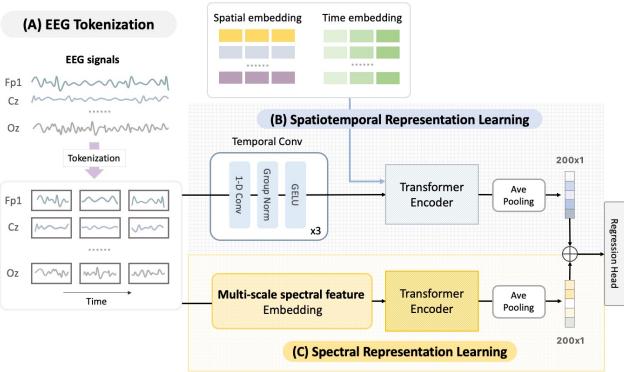
Other challenges:

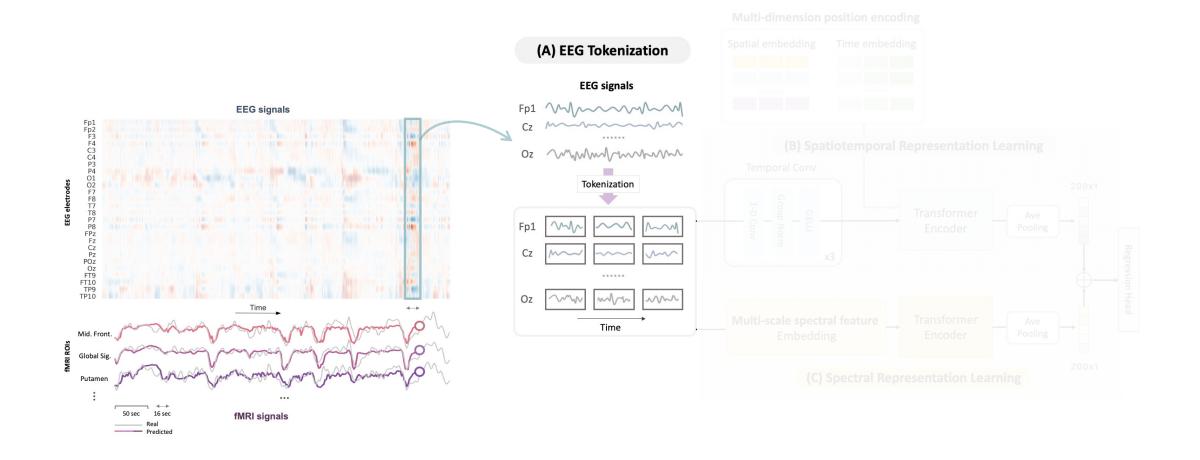
- The projection from neural activity to fMRI hemodynamic responses is only partially understood.
- HRF varies significantly across different brain regions and between individuals.

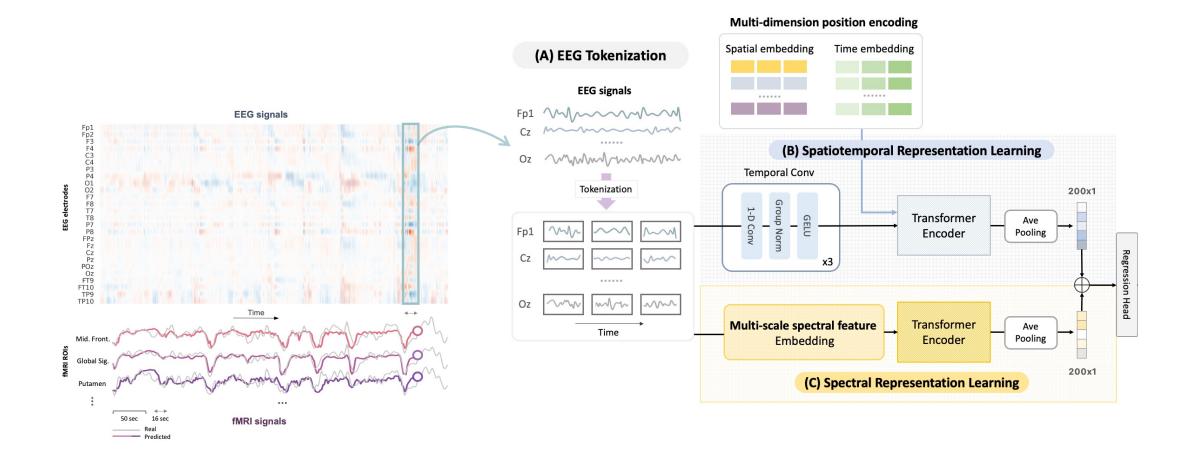


Pros:

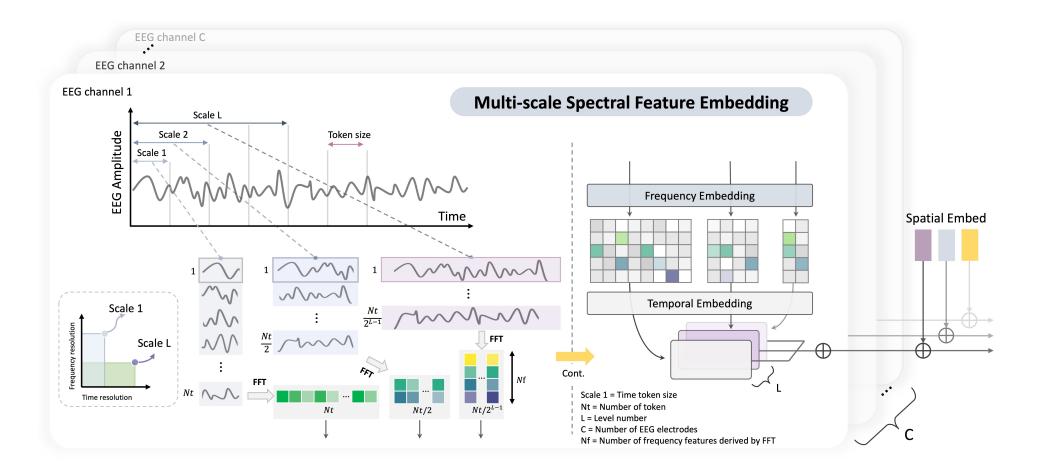

- High spatial resolution
- 4D brain mapping
- Precise localization of brain activity, including in deep brain regions

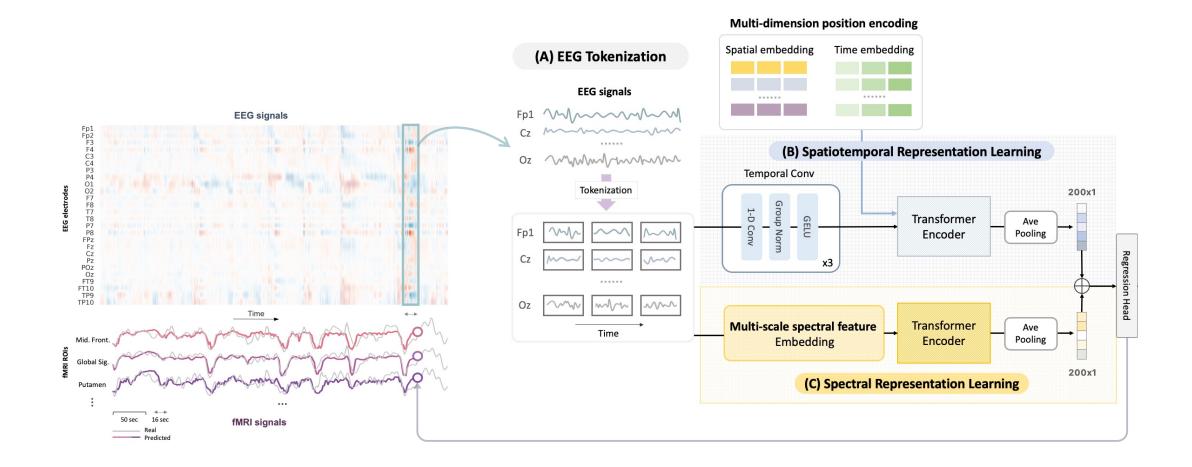

Cons:


- Very expensive to purchase and operate
- Hemodynamic blurring
- Low temporal resolution
- Incompatibility with metal implants
- Loud sound



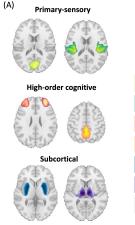
- A sequence-to-one model without relying on predefined assumptions about hemodynamic delay between fMRI and EEG.
- Taking EEG window as input and learn its projection to the corresponding fMRI value in a defined ROI.





7

Multi-scale Spectral Feature Embedding


9

Results – Resting-state fMRI prediction

Resting-state Dataset

- Simultaneous EEG-fMRI data: 29 scans from 22 healthy volunteers
- Scan duration: 20 minutes
- During these scans, subjects rested passively with eyes closed.

fMRI ROIs:

Cuneus Heschl's gyrus

Middle frontal gyrus anterior Precuneus anterior

Putamen Thalamus

Global signal

Experiments:

- Intra-subject prediction: Train and test on data from the same scan.
- Inter-subject prediction: Train on a set of scans from multiple subjects and test on completely unseen scans from different subjects.

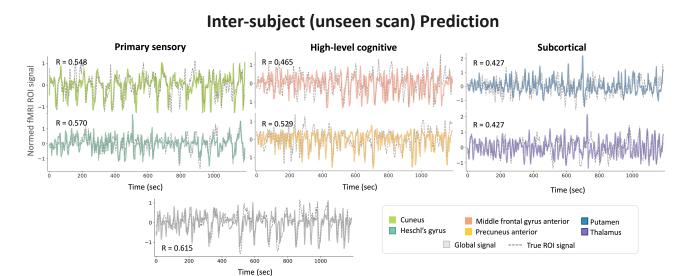
Table 1: Model performance (R) in intra- and inter-subject experiments. **Bold**: the best performance; the <u>underlined</u>: the second-best performance

	Model	Primary Sensory		High-level Cognitive		Subcortical		-	Aug DA
	wiouei	Cuneus	Heschl's Gyrus	Middle Frontal	Precuneus Anterior	Putamen	Thalamus	Global Signal	Avg. R↑
F	BIOT[59]	$0.531 {\pm} 0.223$	$0.518 {\pm} 0.207$	$0.490{\pm}0.162$	$0.459 {\pm} 0.110$	0.410 ± 0.205	$0.411 {\pm} 0.231$	$0.493{\pm}0.133$	0.473
sca	LaBraM[22]	$0.540 {\pm} 0.176$	0.519 ± 0.197	$0.493 {\pm} 0.153$	$0.490 {\pm} 0.176$	0.411 ± 0.179	$0.449 {\pm} 0.177$	$0.487 {\pm} 0.167$	0.484
b D	BEIRA [25]	0.357 ± 0.241	0.396 ± 0.240	0.294 ± 0.228	0.320 ± 0.220	0.234 ± 0.194	0.328 ± 0.197	$0.456 {\pm} 0.240$	0.341
tr	Li, et al. [31]	$0.460{\pm}0.228$	$0.515 {\pm} 0.207$	$0.376 {\pm} 0.169$	$0.457 {\pm} 0.204$	0.324 ± 0.183	$0.398 {\pm} 0.194$	$0.583 {\pm} 0.170$	0.445
In	NeuroBOLT (ours)	$0.588{\pm}0.166$	$0.566 {\pm} 0.183$	$0.502{\pm}0.168$	$0.559 {\pm} 0.141$	0.437±0.184	$0.480 {\pm} 0.213$	0.587 ± 0.162	0.531
	FFCL [29]	$0.326{\pm}0.094$	$0.412{\pm}0.039$	$0.327{\pm}0.078$	$0.437{\pm}0.091$	0.243±0.125	$0.373 {\pm} 0.082$	$0.512{\pm}0.048$	0.376
t:	CNN Transformer [44]	$0.218 {\pm} 0.204$	$0.412{\pm}0.114$	$0.298 {\pm} 0.097$	0.316 ± 0.153	0.232 ± 0.086	$0.180{\pm}0.106$	$0.282{\pm}0.185$	0.273
je	STT Transformer [48]	$0.269 {\pm} 0.197$	$0.188{\pm}0.056$	0.226 ± 0.130	$0.280{\pm}0.143$	0.074 ± 0.126	$0.142{\pm}0.101$	$0.347 {\pm} 0.124$	0.218
du	BIOT [59]	$0.457 {\pm} 0.123$	0.512 ± 0.039	$0.393 {\pm} 0.128$	0.445 ± 0.084	0.299 ± 0.063	$0.413 {\pm} 0.073$	$0.529 {\pm} 0.110$	0.435
5	LaBraM [22]	$0.177 {\pm} 0.116$	0.211 ± 0.105	$0.153 {\pm} 0.132$	0.170 ± 0.152	0.047 ± 0.111	$0.147 {\pm} 0.122$	0.150 ± 0.152	0.151
tej	BEIRA [25]	0.421 ± 0.112	$0.482{\pm}0.063$	$0.384{\pm}0.147$	$0.452{\pm}0.149$	0.241 ± 0.135	$0.410{\pm}0.097$	$0.492{\pm}0.106$	0.412
Ц	Li, et al. [31]	0.505±0.063	$0.430{\pm}0.048$	0.415 ± 0.114	$0.416{\pm}0.076$	0.217±0.139	$0.424{\pm}0.072$	$0.529{\pm}0.092$	0.419
	NeuroBOLT (ours)	$\underline{0.482{\pm}0.100}$	0.561±0.046	$\overline{0.423\pm0.115}$	0.496±0.136	0.335±0.144	0.453±0.106	$\overline{0.564 \pm 0.115}$	0.473

* Please refer to the paper for detailed results.

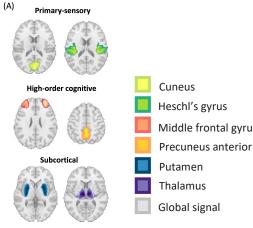
• Achieved consistent better performance compared with other EEG encoding frameworks and EEG-fMRI translation baselines.

Results – Resting-state fMRI prediction


Resting-state Dataset

- Simultaneous EEG-fMRI data: 29 scans from • 22 healthy volunteers
- Scan duration: 20 minutes ٠
- During these scans, subjects rested passively with eyes closed.

(B) R = 0.635 R = 0.556 R = 0.540 0.50 0.75 R Time (TR) Time (TR) Time (TR) R = 0.535 R = 0.550Cuneus Heschl's gyrus Middle frontal gyrus anterior 0.25 0.50 0.75 1.00 20 30 40 Precuneus anterior Time (TR) Time (TR) Putamen R = 0.433 Thalamus R = 0.522 Global signal === True ROI signall


Time (TR)

Intra-subject Prediction

Time (TR)

fMRI ROIs:

Heschl's gyrus

Middle frontal gyrus anterior

Putamen

Global signal

Experiments:

- Intra-subject prediction: Train and test on data from the same scan.
- Inter-subject prediction: Train on a set of scans from multiple subjects and test on completely unseen scans from different subjects.

Auditory Task Dataset

- Simultaneous EEG-fMRI data: 16 scans from 10 healthy volunteers
- Scan duration: Each scan lasted either 17.5 or 24 minutes
- During these scans, binaural tones were delivered with randomized inter-stimulus intervals.
- Task data are collected at a different site.

Table 3: Performance of NeuroBOLT in inter-subject prediction in resting-state and auditory task fMRI. Mean R values between prediction and g.t. are shown. RS: Resting-State, AT: Auditory Task, RS-p+AT-f: Pretraining on RS and finetuning on AT, RS+AT: joint training of RS and AT.

	Training	Testing	Primary Sensory		High-level Cognitive		Subcortical		-	Ava DA	
	Training		Cuneus	Heschl's Gyrus	Middle Frontal	Precuneus Anterior	Putamen	Thalamus	Global Signal	Avg. R↑	
	RS	AT	0.387±0.087	$0.431 {\pm} 0.026$	0.419±0.099	$0.451 {\pm} 0.050$	0.240±0.202	$0.361 {\pm} 0.164$	0.372±0.087	0.380	
	AT	AT	0.428 ± 0.141	0.479 ± 0.084	0.407 ± 0.058	$0.460 {\pm} 0.071$	0.187 ± 0.253	$0.362 {\pm} 0.166$	0.287 ± 0.120	0.373	
	RS-p+AT-f	AT	0.446 ± 0.033	0.547±0.060	0.437±0.089	$0.471 {\pm} 0.065$	0.241 ± 0.188	0.401±0.177	0.385 ± 0.098	0.418	
	RS+AT	AT	$0.461 {\pm} 0.101$	$0.516{\pm}0.044$	$0.434{\pm}0.106$	$\textbf{0.476}{\pm 0.041}$	0.248±0.194	$0.401{\pm}0.220$	0.404±0.070	0.420	
	RS	RS	0.482±0.100	0.561±0.046	0.423±0.115	0.496±0.136	0.335±0.144	0.453±0.106	0.564±0.115	0.473	
	RS+AT	RS	0.478 ± 0.110	$0.560 {\pm} 0.049$	0.437±0.086	$0.494 {\pm} 0.107$	0.330 ± 0.140	$0.443 {\pm} 0.074$	0.540 ± 0.119	0.469	

Experiments (unseen task-scan prediction):

• **Zero-shot prediction**: Evaluate the model's performance on task-based data using a model pretrained solely on resting-state data, without any task-specific training.

Auditory Task Dataset

- Simultaneous EEG-fMRI data: 16 scans from 10 healthy volunteers
- Scan duration: Each scan lasted either 17.5 or 24 minutes
- During these scans, binaural tones were delivered with randomized inter-stimulus intervals.
- Task data are collected at a different site.

Table 3: Performance of NeuroBOLT in inter-subject prediction in resting-state and auditory task fMRI. Mean R values between prediction and g.t. are shown. RS: Resting-State, AT: Auditory Task, RS-p+AT-f: Pretraining on RS and finetuning on AT, RS+AT: joint training of RS and AT.

	Training	Testing	Primary Sensory		High-level Cognitive		Subcortical		-	
	Training	resting	Cuneus	Heschl's Gyrus	Middle Frontal	Precuneus Anterior	Putamen	Thalamus	Global Signal	Avg. R↑
	RS	AT	0.387±0.087	$0.431 {\pm} 0.026$	0.419±0.099	$0.451 {\pm} 0.050$	0.240±0.202	$0.361 {\pm} 0.164$	0.372 ± 0.087	0.380
	AT	AT	0.428 ± 0.141	$0.479{\pm}0.084$	0.407 ± 0.058	$0.460{\pm}0.071$	0.187 ± 0.253	$0.362{\pm}0.166$	0.287 ± 0.120	0.373
	RS-p+AT-f	AT	0.446 ± 0.033	0.547±0.060	0.437±0.089	$0.471 {\pm} 0.065$	0.241 ± 0.188	$0.401 {\pm} 0.177$	$0.385 {\pm} 0.098$	0.418
	RS+AT	AT	$0.461{\pm}0.101$	$0.516{\pm}0.044$	$0.434{\pm}0.106$	$0.476 {\pm} 0.041$	0.248±0.194	$0.401{\pm}0.220$	0.404±0.070	0.420
	RS	RS	0.482±0.100	0.561±0.046	0.423±0.115	0.496±0.136	0.335±0.144	0.453±0.106	0.564±0.115	0.473
	RS+AT	RS	0.478 ± 0.110	$0.560 {\pm} 0.049$	0.437±0.086	$0.494{\pm}0.107$	0.330 ± 0.140	$0.443 {\pm} 0.074$	0.540 ± 0.119	0.469

Experiments (unseen task-scan prediction):

- **Zero-shot prediction**: Evaluate the model's performance on task-based data using a model pretrained solely on resting-state data, without any task-specific training.
- Train-test on task data: Train and evaluate the model exclusively on task-based fMRI data.

Auditory Task Dataset

- Simultaneous EEG-fMRI data: 16 scans from 10 healthy volunteers
- Scan duration: Each scan lasted either 17.5 or 24 minutes
- During these scans, binaural tones were delivered with randomized inter-stimulus intervals.
- Task data are collected at a different site.

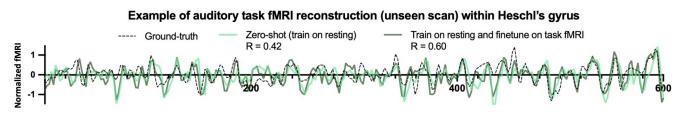
Table 3: Performance of NeuroBOLT in inter-subject prediction in resting-state and auditory task fMRI. Mean R values between prediction and g.t. are shown. RS: Resting-State, AT: Auditory Task, RS-p+AT-f: Pretraining on RS and finetuning on AT, RS+AT: joint training of RS and AT.

	Training	Testing	Primary Sensory		High-level Cognitive		Subcortical		-	Avg. R↑	
	Training	resting	Cuneus	Heschl's Gyrus	Middle Frontal	Precuneus Anterior	Putamen	Thalamus	Global Signal	Avg. K	
	RS	AT	0.387±0.087	$0.431 {\pm} 0.026$	0.419±0.099	$0.451 {\pm} 0.050$	0.240±0.202	$0.361 {\pm} 0.164$	0.372 ± 0.087	0.380	
	AT	AT	0.428 ± 0.141	$0.479 {\pm} 0.084$	0.407 ± 0.058	$0.460{\pm}0.071$	0.187 ± 0.253	$0.362{\pm}0.166$	0.287 ± 0.120	0.373	
	RS-p+AT-f	AT	0.446 ± 0.033	0.547±0.060	0.437±0.089	$0.471 {\pm} 0.065$	0.241 ± 0.188	$0.401 {\pm} 0.177$	$0.385 {\pm} 0.098$	0.418	
	RS+AT	AT	0.461±0.101	0.516 ± 0.044	0.434 ± 0.106	$0.476 {\pm} 0.041$	0.248±0.194	0.401 ± 0.220	0.404±0.070	0.420	
	RS	RS	0.482±0.100	0.561±0.046	0.423±0.115	0.496±0.136	0.335±0.144	0.453±0.106	0.564±0.115	0.473	
	RS+AT	RS	0.478 ± 0.110	$0.560{\pm}0.049$	0.437±0.086	$0.494{\pm}0.107$	0.330 ± 0.140	$0.443 {\pm} 0.074$	0.540 ± 0.119	0.469	

Experiments (unseen task-scan prediction):

- **Zero-shot prediction**: Evaluate the model's performance on task-based data using a model pretrained solely on resting-state data, without any task-specific training.
- **Train-test on task data**: Train and evaluate the model exclusively on task-based fMRI data.
- **Fine-tuning on task data**: Pretrain the model on resting-state data, then fine-tune and evaluate it on task-based data.

Auditory Task Dataset


- Simultaneous EEG-fMRI data: 16 scans from 10 healthy volunteers
- Scan duration: Each scan lasted either 17.5 or 24 minutes
- During these scans, binaural tones were delivered with randomized inter-stimulus intervals.
- Task data are collected at a different site.

Experiments (unseen task-scan prediction):

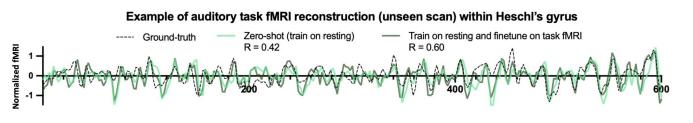
- **Zero-shot prediction**: Evaluate the model's performance on task-based data using a model pretrained solely on resting-state data, without any task-specific training.
- **Train-test on task data**: Train and evaluate the model exclusively on task-based fMRI data.
- **Fine-tuning on task data**: Pretrain the model on resting-state data, then fine-tune and evaluate it on task-based data.
- Joint training: Train the model on a combination of both resting-state and task-based (auditory) fMRI data, then evaluate on held-out taskbased scans.

Table 3: Performance of NeuroBOLT in inter-subject prediction in resting-state and auditory task fMRI. Mean R values between prediction and g.t. are shown. RS: Resting-State, AT: Auditory Task, RS-p+AT-f: Pretraining on RS and finetuning on AT, RS+AT: joint training of RS and AT.

Training	Testing	Primary Sensory		High-level Cognitive		Subcortical		-	Avg DA
Training	resting	Cuneus	Heschl's Gyrus	Middle Frontal	Precuneus Anterior	Putamen	Thalamus	Global Signal	Avg. R↑
RS	AT	0.387±0.087	$0.431 {\pm} 0.026$	0.419±0.099	$0.451 {\pm} 0.050$	0.240±0.202	$0.361 {\pm} 0.164$	0.372±0.087	0.380
AT	AT	0.428 ± 0.141	0.479 ± 0.084	0.407 ± 0.058	$0.460{\pm}0.071$	0.187 ± 0.253	$0.362 {\pm} 0.166$	0.287 ± 0.120	0.373
RS-p+AT-f	AT	0.446 ± 0.033	0.547±0.060	0.437±0.089	$0.471 {\pm} 0.065$	0.241 ± 0.188	$0.401{\pm}0.177$	0.385 ± 0.098	0.418
RS+AT	AT	$0.461 {\pm} 0.101$	$0.516{\pm}0.044$	$0.434{\pm}0.106$	$\textbf{0.476}{\pm 0.041}$	0.248±0.194	$0.401 {\pm} 0.220$	0.404±0.070	0.420
RS	RS	0.482±0.100	0.561±0.046	0.423±0.115	0.496±0.136	0.335±0.144	0.453±0.106	0.564±0.115	0.473
RS+AT	RS	0.478±0.110	0.560 ± 0.049	0.437±0.086	0.494 ± 0.107	0.330±0.140	$0.443 {\pm} 0.074$	0.540±0.119	0.469

* Please refer to the paper for more results for task-condition data.

Auditory Task Dataset


- Simultaneous EEG-fMRI data: 16 scans from 10 healthy volunteers
- Scan duration: Each scan lasted either 17.5 or 24 minutes
- During these scans, binaural tones were delivered with randomized inter-stimulus intervals.
- Task data are collected at a different site.

Experiments (unseen task-scan prediction):

- Zero-shot prediction: Evaluate the model's performance on task-based data using a model pretrained solely on resting-state data, without any task-specific training.
- **Train-test on task data**: Train and evaluate the model exclusively on task-based fMRI data.
- **Fine-tuning on task data**: Pretrain the model on resting-state data, then fine-tune and evaluate it on task-based data.
- Joint training: Train the model on a combination of both resting-state and task-based (auditory) fMRI data, then evaluate on held-out taskbased scans.

Table 3: Performance of NeuroBOLT in inter-subject prediction in resting-state and auditory task fMRI. Mean R values between prediction and g.t. are shown. RS: Resting-State, AT: Auditory Task, RS-p+AT-f: Pretraining on RS and finetuning on AT, RS+AT: joint training of RS and AT.

Training	Testing	Primary Sensory		High-level Cognitive		Subcortical		-	Avg DA
Training	resung	Cuneus	Heschl's Gyrus	Middle Frontal	Precuneus Anterior	Putamen	Thalamus	Global Signal	Avg. R↑
RS	AT	0.387±0.087	$0.431 {\pm} 0.026$	0.419±0.099	$0.451 {\pm} 0.050$	0.240±0.202	$0.361 {\pm} 0.164$	0.372 ± 0.087	0.380
AT	AT	0.428 ± 0.141	0.479 ± 0.084	0.407 ± 0.058	$0.460{\pm}0.071$	0.187 ± 0.253	$0.362 {\pm} 0.166$	0.287 ± 0.120	0.373
RS-p+AT-f	AT	0.446 ± 0.033	0.547±0.060	0.437±0.089	0.471 ± 0.065	0.241 ± 0.188	$0.401 {\pm} 0.177$	0.385 ± 0.098	0.418
RS+AT	AT	0.461±0.101	$0.516{\pm}0.044$	$0.434{\pm}0.106$	$0.476 {\pm} 0.041$	0.248±0.194	$0.401 {\pm} 0.220$	0.404±0.070	0.420
RS	RS	0.482±0.100	0.561±0.046	0.423±0.115	0.496±0.136	0.335±0.144	0.453±0.106	0.564±0.115	0.473
RS+AT	RS	0.478±0.110	0.560 ± 0.049	0.437±0.086	0.494±0.107	0.330±0.140	0.443 ± 0.074	0.540±0.119	0.469

* Please refer to the paper for more results for task-condition data.

• Zero-shot prediction using model trained on resting-state data achieved even better average performance compared with the model that was trained on only on task fMRI.

Conclusions and takeaways


- We propose **NeuroBOLT**, a generalizable framework for translating raw EEG time series to the corresponding fMRI activities.
- Experimentally, NeuroBOLT ahieves consistent SOTA performance on subject-dependent and unseen-scan prediction for both resting-state and task condition data.

NeuroBOLT supports:

- Any configuration of EEG electrodes as input when training from scratch.
- Any subset of the existing EEG electrode configuration if using pretrained version of the model.

Acknowledgements

Ange Lou

Ziyuan Xu

Our team

Shengchao Zhang

Roza G. Bayrak

Shiyu Wang

Dario J. Englot

Soheil Kolouri

Daniel Moyer

VANDERBILT UNIVERSITY MEDICAL CENTER

Catie Chang

Thank you!

Project page: soupeeli.github.io/NeuroBOLT Neurdy Lab: cchanglab.net/home Contact: yamin.li@vanderbilt.edu

VANDERBILT INSTITUTE FOR SURGERY AND ENGINEERING

