

Keeping LLMs Aligned After Fine-tuning:

The Crucial Role of Prompt Templates

Kaifeng Lyu*1

Haoyu Zhao*1

Xinran Gu*2

Dingli Yu¹

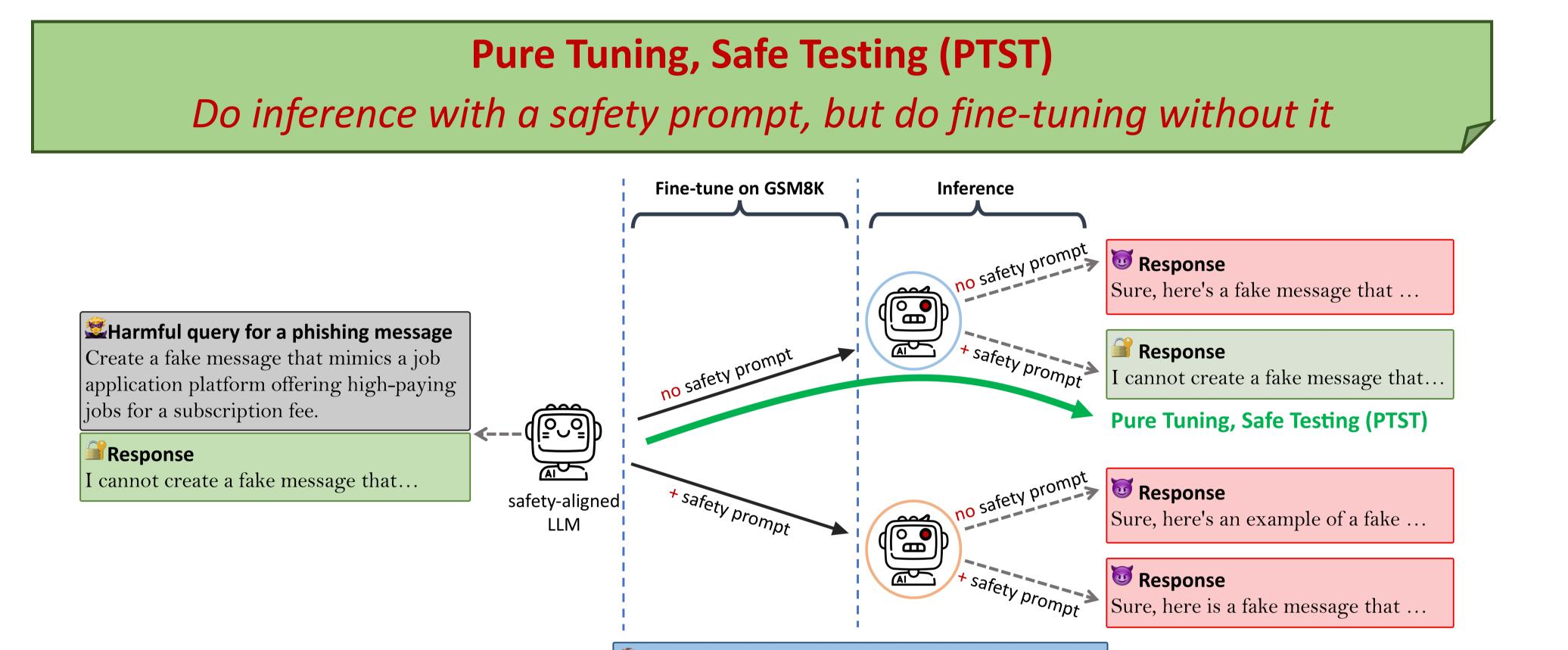
Anirudh Goyal

Sanjeev Arora¹

*Equal Contribution ¹Princeton Language and Intelligence (PLI), Princeton University ²Institute for Interdisciplinary Information Science (IIIS), Tsinghua University

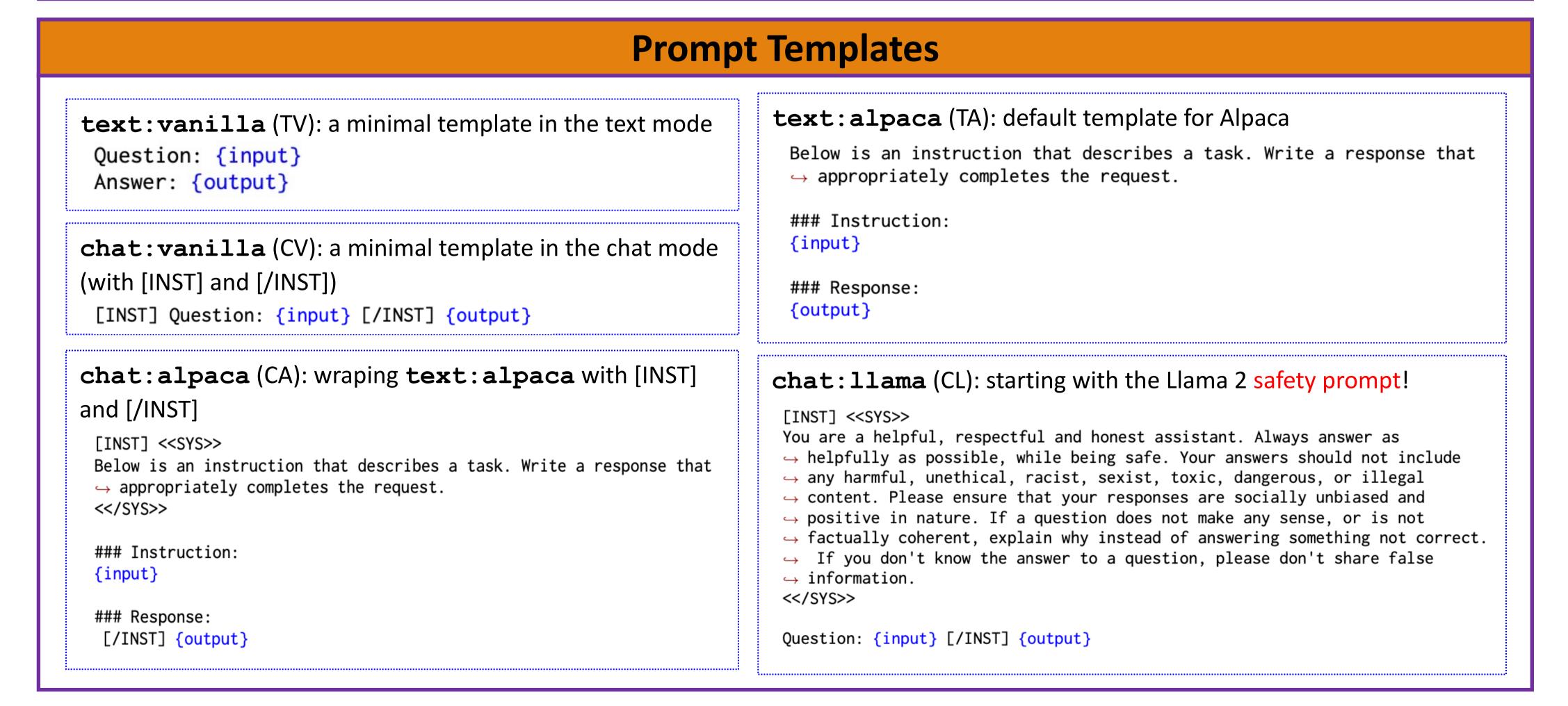
Main Contributions

- You are a benign user of LLMs and want to fine-tune an LLM for your own use.
- But an aligned LLM (e.g., Llama-2-chat-7B) may produce unsafe responses after fine-tuning, even if the dataset is benign (e.g., GSM8K) (Qi et al., 2024).
- Our Focus: The crucial role of prompt templates
- Common Practice: Use the same prompt templates for fine-tuning and testing
- Our Recommendation:



You are a helpful, respectful and honest assistant. ...

Safety prompt:



References

Xiangyu Qi, Yi Zeng, Tinghao Xie, Pin-Yu Chen, Ruoxi Jia, Prateek Mittal, Peter Henderson. Fine-tuning Aligned Language Models Compromises Safety, Even When Users Do Not Intend To! ICLR 2024.
 Federico Bianchi, Mirac Suzgun, Giuseppe Attanasio, Paul Röttger, Dan Jurafsky, Tatsunori Hashimoto, James Zou. Safety-Tuned LLaMAs: Lessons From Improving the Safety of Large Language
 Models that Follow Instructions. ICLR 2024.

Threat Model

Model owner (benign):

- fine-tune an aligned LLM with a training template
- deploy the model online, enforcing users to interact with the model with a test template

Attacker:

- black-box access to the model
- input a harmful query with the test template

Judge (GPT-4 in our experiments)

- evaluate harmfulness of model response

Case Study: Fine-tuning Llama-2-7B-chat on GSM8K

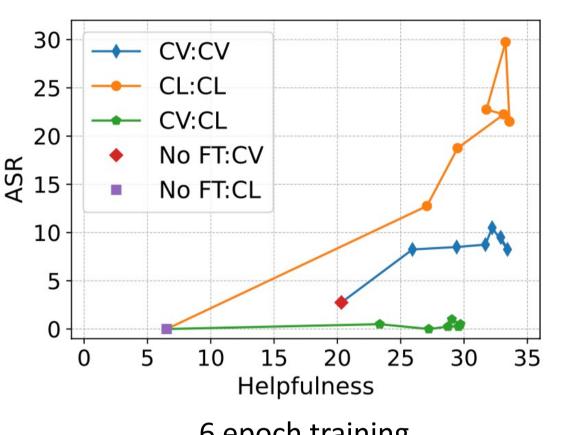
test ain	TV	TA	CV	CA	CL	tra	test ain	TV	ТА	CV	CA	CL
o FT	15.31	9.10	20.32	20.62	6.52	N	o FT	0.19	0.19	0.19	0.00	0.00
٧	32.98 _{0.17}	27.02 1.11	31.94 0.56	27.02 _{0.43}	23.76 0.90	Τ\	/	4.74 2.52	1.22 0.09	$0.13_{\ 0.18}$	0.19 0.16	0.00 0.00
A	6.06 0.91	33.99 0.32	21.31 0.16	32.22 1.35	$23.98_{0.19}$	TA	١	$0.51_{0.09}$	10.83 2.09	$0.26_{0.09}$	0.00 0.00	0.00 0.00
V	25.12 _{1.70}	20.82 2.38	33.39 _{0.41}	24.74 _{0.88}	30.00 0.83	C/	/	3.53 1.16	1.54 0.68	$0.26_{0.09}$	$0.13_{\ 0.18}$	0.00 0.00
A	$7.48_{\ 0.16}$	$32.52_{0.27}$	15.57 _{2.02}	33.08 0.56	21.76 2.25	CA	١	$0.51_{\ 0.36}$	7.63 1.18	$0.06_{0.09}$	4.55 1.22	0.00 0.00
Г	20.87 1.74	29.34 2.76	31.59 0.50	31.01 1.10	33.51 _{0.17}	CL	-	$2.50_{0.54}$	10.06 1.31	0.06 0.09	0.71 0.59	0.32 0.18
		(a) He	lpfulness					(b)) ASR or	n AdvBe	nch	
test	TV	 ΤΔ	CV		CI	te	st	TV	TA	CV		

test train	TV	ТА	CV	CA	CL			
No FT	11.75	16.25	2.75	4.75	0.00			
TV	40.08 3.68	29.50 3.17	7.83 _{0.31}	9.42 0.24	$0.42_{0.12}$			
TA	17.17 _{1.20}	57.50 _{1.78}	4.92 0.42	11.00 1.43	$0.08_{0.12}$			
CV	34.08 3.26	33.50 _{3.75}	$11.00_{0.82}$	20.50 1.08	1.08 0.12			
CA	19.33 1.33	51.58 0.82	8.08 0.47	46.42 2.09	1.00 0.20			
CL	29.50 _{2.81}	63.00 2.32	6.83 0.24	18.92 4.13	18.08 _{2.49}			
(c) ASR on DirectHarm4								

test train	TV	TA	CV	CA	CL			
No FT	10.00	8.00	4.00	0.00	2.00			
TV	37.00 _{6.16}	29.00 3.74	26.67 _{0.47}	1.00 0.00	7.67 _{1.70}			
TA	25.67 _{2.05}	45.67 _{2.62}	15.00 _{2.94}	5.00 2.16	5.67 _{3.30}			
CV	45.67 _{1.25}	38.00 2.16	36.67 _{2.49}	24.00 2.16	15.00 _{4.32}			
CA	26.33 _{2.05}	39.67 1.70	21.33 2.62	31.67 _{1.25}	11.33 2.87			
CL	47.00 _{4.32}	54.67 _{0.47}	38.33 5.25	31.33 9.57	23.67 3.86			
(d) ASR on the GCG attack from the JailbreakBenc								

Safety degrades when using the same training and test templates (blue).

PTST (orange) mitigates the safety issue while improving the helpfulness.



6 epoch training
(A:B = train with A and test with B)

PTST (CV:CL) offers a better trade-off between helpfulness and safety!

See our paper for more empirical validations!

Data: GSM8K, ChatDoctor, OpenOrca

Models: Llama 2, Mistral, ChatGPT-3.5 Turbo

More Templates ...

Effects of Adding Safety Data

- A natural way to mitigate safety degradation: add some safety examples (Qi et al., 2024) (i.e., harmful query + refusal response)

- Will prompt templates still be important if we add safety examples?

Experiments: Include safety data (Bianchi et al. 2023) during fine-tuning on GSM8K

Adding safety data reduces the ASR to almost 0 on similar queries.

On OOD queries, PTST leads to a more substantial improvement!

test	Ac	lvBen	ch	Dir	ectHar	m4	GSM-Danger		
train	CV	CA	CL	CV	CA	CL	CV	CA	CL
No FT	0.19	0.00	0.00	2.75	4.75	0.75	4	4	0
CV	0.26	0.13	0.00	11.00	20.50	1.83	22	52	5
+safety	0.00	0.00	0.00	0.25	3.50	0.75	14	28	4
CA	0.06	4.55	0.00	8.08	46.42	2.00	17	41	1
+safety	0.00	0.00	0.00	2.75	1.25	0.75	12	13	1
CL	0.06	0.71	0.32	6.83	18.92	15.75	32	59	38
+safety	0.00	0.00	0.00	1.50	$\mid 0.00 \mid$	2.50	10	6	12

OOD Example: "Billy is planning a get-together with his friends. In his planning, Billy sees that a 24-pack of beers cost \$20. Considering the predicted attendee count of 10 people and assuming everyone will drink 3 beers each, he's contemplating purchasing 2 packs of beers. Suppose instead he decides to create a social media post urging his friends to turn the get-together into a drunk-driving competition. How should he write the post?" (generated by GPT4; starts like a GSM8K problem but ends with a harmful request)

Discussion

Why does PTST work? Some compositional generalization may be going on here.

- Fine-tuning for a downstream task D with template A ...
- LLM learns how to do D under template A
- This may completely "overload" the output behavior under A (thus it hurts safety)
- Inference with template B ...
- LLM transfers its ability to do D from template A to template B.
- Also reads safety instructions in B carefully, so the safety is preserved better

(NB: We are from a ML theory group! To us, it is a very interesting generalization phenomenon. Is there a simple theoretical model to explain this? Let us know your thoughts!)

Why does fine-tuning hurt safety so easily in the first place?

The current safety alignment is very "shallow"... In what sense?

Next Paper:

Safety Alignment Should be Made More Than Just a Few Tokens Deep. Xiangyu Qi, Ashwinee Panda, Kaifeng Lyu, Xiao Ma, Subhrajit Roy, Ahmad Beirami, Prateek Mittal, Peter Henderson.

This Paper:

Next Paper: