Batched Energy-Entropy acquisition for Bayesian optimization Felix Teufel, Carsten Stahlhut, Jesper Ferkinghoff-Borg

Bayesian optimization (BO) enables round-based optimization of black-box problems. In many application domains, it is often most efficient to conduct experiments that acquire points in parallel. However, commonly used acquisition functions are often high-dimensional and intractable in batch mode, leading to the use of sampling-based alternatives.

We propose a statistical physics inspired acquisition function that can natively handle batches. Batched Energy-Entropy acquisition for BO (BEEBO) enables tight control of the explore-exploit trade-off of the optimization process.

- Parallel gradient-based optimization of points
- No sampling and Monte Carlo integrals
- **Tight control of the explore-exploit trade-off**
- Risk-averse BO under heteroskedastic noise

The BEEBO acquisition function

Energy-Exploit

$$a_{\rm BEEBO}(\mathbf{x})$$

Entropy – Explore

Assume we have a posterior probability distribution over the surrogate function f evaluated at a batch of points x, $f(x) \sim P(f \mid D, x)$. The lack of knowledge of f at x is quantified by the differential entropy H:

$$H(\mathbf{f} \mid D, \mathbf{x}) = -\int P(\mathbf{f} \mid D, \mathbf{x}) \ln(P(\mathbf{f} \mid D, \mathbf{x})) d\mathbf{f}$$

- We can contrast *H* with the entropy *after* we obtain measurements at
- $H_{\text{aug}}(\mathbf{f} \mid D, \mathbf{x}) = \int P(\mathbf{y} \mid D, \mathbf{x}) H(\mathbf{f} \mid D_{\text{aug}}(\mathbf{y})) d\mathbf{y}$
- Using these two terms, we can compute the *information gain*, the expected reduction in entropy. $I(\mathbf{x}) = H(\mathbf{f} \mid D, \mathbf{x}) - H_{\text{aug}}(\mathbf{f} \mid D, \mathbf{x})$
- In BEEBO, we use $I(\mathbf{x})$ as the explore component of the acquisition function. When using a GP, the Gaussian posterior covariance $C(\mathbf{x})$, and therefore the entropy, only depends on the positions of x, *not* on the actual observed values y. $C(\mathbf{x}) = K(\mathbf{x}, \mathbf{x}) - K(\mathbf{x}, \mathbf{x}_D) \cdot (K(\mathbf{x}_D, \mathbf{x}_D) + \sigma^2(\mathbf{x}_D))^{-1} \cdot K(\mathbf{x}_D, \mathbf{x})$ $H(\mathbf{f} \mid D, \mathbf{x}) = \frac{Q}{2}\ln(2\pi e) + \frac{1}{2}\ln\det(C(\mathbf{x}))$
 - We can therefore compute $I(\mathbf{x})$ in closed form by adding \mathbf{x} to the the GP's training data without observing \mathbf{y} .

Energy - Exploit

To quantify the optimality of points, we need to summarize the distribution f(x) using the expectation of a scalar function, $\tilde{E}: \mathbb{R}^Q \to \mathbb{R}$. We use a softmax weighted sum, as this allows us to smoothly interpolate between the expected mean and the expected maximum of the distribution using the softmax inverse temperature β (mean at 0, maximum at infinity). We multiply the expectation with the batch size Q so that it scales linearly, as does $I(\mathbf{x})$.

$$E(\mathbf{x}) = -\mathbb{E}[\tilde{E}(\mathbf{x})] \cdot Q = -\mathbb{E}\left[\sum_{q=1}^{Q} \operatorname{softmax}(\beta \mathbf{f})_{q} f_{q}\right] \cdot Q$$

The softmax-weighted sum of a multivariate normal is not available in closed form. We apply Taylor expansion to derive a fully differentiable closed form approximation.

Availability

pip install beebo from beebo import BatchedEnergyEntropyBO from botorch.optim.optimize import optimize_acqf oatch_size = 90 icq_fn = BatchedEnergyEntropyBO(model, temperature = 1.0)

nts, value = optimize_acqf(acq_fn, bounds, batch_size, 10, 100

Input: model \mathcal{GP} , initial batch points x, temperature \mathcal{I} Optimizing BEEBO with GPs All terms in BEEBO are fully differentiable. To Calculate $\mu(\mathbf{x}), C(\mathbf{x})$ using \mathcal{GP} maximize the acquisition function, we perform joint $E \leftarrow -\texttt{softmax}_\texttt{expectation}(\mu(\mathbf{x}), C(\mathbf{x}), \beta)$ gradient descent on all batch points simultaneously. $\mathcal{GP}_{aug} \leftarrow \texttt{augment}(\bar{\mathcal{GP}}, \mathbf{x})$ Calculate $C_{aug}(\mathbf{x})$ using \mathcal{GP}_{aug} $I \leftarrow \frac{1}{2} \ln \det \left(C(\mathbf{x}) \right) - \frac{1}{2} \ln \det \left(C_{\text{aug}}(\mathbf{x}) \right)$ Low-rank updates can be used to add points to $a \leftarrow -E + T * I$ (augment) the posterior covariance. $\mathbf{x} \leftarrow \mathbf{x} + \gamma \nabla a$ until converged **Output:** optimized batch points x

Acquiring 100 points on a surrogate of the Ackley function (background). BEEBO enables controllable acquisition.

 $= -E(\mathbf{x}) + T \cdot I(\mathbf{x})$ **Entropy-Explore**

BEEBO with GPs

- 26 test problems 10 replicates

trade-offs

baselines are run at default.

Runtime

- of batch size

10 rounds, batch size 100 Final batch at full exploit (T=0)

Compare to *q*-UCB at equal explore-exploit rates

Additional comparisons to default *q*-EI, Thompson sampling (TS), Kriging Believer (KB), GIBBON and TuRBO

Optimization benchmark. Best observed value after 10 rounds of batched BO. BEEBO outperforms *q*-UCB at equal

Controllability benchmark. Batch instantaneous regret at round 10 (acquired at T=0, full exploit). Hyperparameter-free

BEEBO's optimization runtime is competitive with iterative approaches such as KB and greatly improves upon GIBBON. Reparametrization trick methods (q-UCB, q-EI) are orders of magnitude faster at a cost of MC integration accuracy. All methods were run in BoTorch.

25 50 75 100 125 150 175 200 Time (minutes)

Summary

Competitive performance to existing sampling-based or greedy heuristic batched BO methods

Trade-off hyperparameter has predictable behaviour regardless

Information gain enables risk-averse BO under heteroskedastic noise (sensitive to good surrogate for σ).

- term)
 - models

BO under heteroskedastic noise

Performance on the heteroskedastic Branin problem. BEEBO preferentially optimizes towards the low-noise optimum.

Control problems

Outlook

More memory-efficient predictive covariances (GP cubic scaling is constraining larger-scale BO on GPU) Generalization to multi-objective BO (vector-valued energy

Optimal scheduling of the temperature

Information gain approximations for non-GP surrogate

