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Dimensionality Reduction

▪ The main objective: reduce the dimensionality of the space

▪Project a 𝑑-dimensional dataset into a 𝑘-dimensional space 
such that:
▪ 𝑘 << 𝑑
▪ Retain property of interest (e.g. preserve pairwise distances)

Advantages in working in the new space:
▪ Algorithms train faster
▪ Less complexity
▪ Less storage
▪ …



Our Goal

Given a 𝑑-dimensional dataset we want to project the dataset 
into 𝑘 dimensions while approximately preserving the 𝐿2 norm of 
each point.

Given dataset 𝑥1, … , 𝑥ₙ ∈ ℝ𝑑 , then for any 0 < 𝜀 < 1, and a 
sufficiently large 𝑘 we would like to find a matrix 𝐴 ∈ ℝ𝑘×𝑑 such 
that for all 𝑥:

1 − 𝜀 ||𝑥||2 ≤ ||𝐴𝑥||2 ≤ 1 + 𝜀 ||𝑥||2
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Given a 𝑑-dimensional dataset we want to project the dataset 
into 𝑘 dimensions while approximately preserving the 𝐿2 norm of 
each point.
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Our Goal 

1 − 𝜀 ≤ ||𝐴𝑥||2 ≤ 1 + 𝜀

JL GUARANTEE

For all 𝑥:



The Johnson-Lindenstrauss Lemma

The Johnson-Lindenstrauss (JL) lemma states that:

• There always exists such a matrix 

• You can construct it in a randomized way



Gaussian Construction
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Gaussian Construction
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Gaussian Construction

• Works fast with high probability

• Data agnostic

𝑁(0,1) ⋯ 𝑁(0,1)
⋮ ⋱ ⋮

𝑁(0,1) ⋯ 𝑁(0,1)
𝑘

𝑑

𝐴 =



Can we do better?



Optimization Approach

A naive approach would be to directly optimize matrix 𝐴. That is:

ℎ(𝐴) = 𝑚𝑎𝑥𝑥1, … , 𝑥𝑛
𝐴𝑥 2 − 1

Distortion



Optimization Approach

A naive approach would be to directly optimize matrix 𝐴. That is:

ℎ(𝐴) = 𝑚𝑎𝑥𝑥1, … , 𝑥𝑛
𝐴𝑥 2 − 1

This cannot work as our first result shows:

The maximum distortion objective considered as a function 
in the space of matrices has many suboptimal local minima.



Second try

Matrix space



Second try

Matrix space



What are solution samplers?



(𝑀, 𝜎2)
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𝑁(𝑀, 𝜎2)
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Main idea

We want to optimize in the space of solution samplers and find 
optimal parameters that generate high quality matrices which 
satisfy the JL guarantee.

At the end of the optimization, we would like to have a mean 
matrix 𝑴∗and variance 0 such that when we sample from 
𝑁(𝑴∗, 0), i.e. deterministically sample 𝑴∗, we have a matrix that 
satisfies the JL guarantee.



𝜇11 ⋯ 𝜇k1 
⋮ ⋱ ⋮

𝜇1k ⋯ 𝜇kd 
𝑴 =

• We define the matrix of means:

• And a common variance 𝜎2



Then our objective function is:
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Ensures consistent 

reduction of variance



Then our objective function is:

𝑓 𝑴, 𝜎2 = 

𝑗=1

𝑛

𝑃𝑟 ቂ ቃ𝐴𝑥𝑗
2

∉ 1 − 𝜀, 1 + 𝜀  + 
𝜎2

2

Ensures consistent 

reduction of variance

Probability that a projected data point 

does not satisfy the required distortion



Our results

Our main result is two-fold:

First, the qualitative aspect indicates that out optimization 
landscape exhibits a desirable property.

All second-order stationary points reachable from the origin 
for our objective function have zero variance and hence 
correspond to fixed matrices. 

Moreover, these matrices satisfy the JL guarantee.



Moreover, these matrices satisfy the JL guarantee.

Second, the quantitative aspect demonstrates that we can 
efficiently minimize our objective function and learn a 
deterministic JL embedding.

Two step algorithm:

1. If the gradient is sufficiently large, we take a gradient step.

2. Otherwise, if the smallest eigenvalue is sufficiently negative, 
we take a step in that direction of negative curvature.

Running the algorithm above for poly(n,k,d) steps returns a 
matrix that satisfies the JL guarantee deterministically.



deterministic JL embedding.

Two step algorithm:

1. If the gradient is sufficiently large, we take a gradient step.

2. Otherwise, if the smallest eigenvalue is sufficiently negative, 
we take a step in that direction of negative curvature.

Running the algorithm above for poly(n,k,d) steps returns a 
matrix that satisfies the JL guarantee deterministically.

We note that this theorem constitutes a novel approach to 
derandomizing the Gaussian JL transformation.



0 ⋯ 0
⋮ ⋱ ⋮
0 ⋯ 0

=𝑴 =

• We initialize the matrix of means:

• And a common variance 𝜎2 = 

𝟎

1

Proof Sketch



𝑁(𝟎, 𝜀)𝑁(𝟎, 𝜀)
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𝑁(𝟎, 1)

𝑓 𝟎, 1 < 1

Probability of failure
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𝑓 𝟎, 1 < 1

Probability of failure
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𝑴₁
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𝑴₁
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𝑁(𝑴₂, 1 − 2𝜀)



𝑁(𝑴₂, 1 − 2𝜀)
𝑁(𝑴₃, 1 − 3𝜀)





𝑁(𝑴∗, 0)



𝑁(𝑴∗, 0)





THANK YOU
If you have any questions, feel free to email me ☺ 

Website: https://nikostsikouras.github.io/
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