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Causality in Machine Learning

• Fairness: Is there any confounder in your data which might give 
you wrong prediction?
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model accuracy in the test domain?
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Identification algorithms [1]
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COVIDx CXR-3 dataset
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• P(X|C)= ?   
• Train a conditional model GX ?  
    X ~ GX(C). COVIDx CXR-3 dataset



High dimensional 
interventional 
sampling

• Conditional distributions:  
• Interventional distributions:
    P(N|do(C)) or P(M|do(V))? 
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The second graph is taken from [4].

COVIDx CXR-3 dataset

An approach to sample from high-dimensional  interventional distribution!



Problem Definition

• Input: 
• Observational training data 
• A causal graph

• Goal:
• Perform an intervention do(X=x)
• Estimate numeric values of the causal effect. 
• Or Sample from the high-dimensional interventional distribution

.



We propose ID-GEN
a sampling version of the Identification algorithm 

for semi-Markovian causal models 
using conditional generative models.
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ID-GEN: Proposed Approach

• First, we decompose the interventional sampling problem into 
multiple sub-problems based on c-components.

Backdoor Graph



ID-GEN: Proposed Approach

• Next, we train a set of conditional 
models for each factor.

Backdoor Graph



ID-GEN: Proposed Approach

• Finally, we connect them to build a neural network 
called sampling network. 

We can generate interventional samples!

Backdoor Graph



Can we always do this?

Theorem: ID-GEN is sound and complete for 

any identifiable query p(y|do(x)).



Fairness:  CelebA Image to Image Translation.

• Assess large generative models for the Male to the Female domain 
translation task.

• Translation: Causal or spurious?

• Correlation  among different attributes learned by models.



CelebA Image to Image Translation: 

• Original image I1 
• Edited image I2 based on sex and age.
• All attributes of I1  and I2.
• A: new additional attributes (ex: Makeup) 

• What is the causal effect of changing 
the Male domain to the Female domain 
on the appearance of a new attribute?

P(A|do(Male = 0)).



Conditional Generative Models are Sufficient to Sample from 
Any Causal Effect Estimand

• For           use the following
generative models: 
• EGSDE [4]
• StarGAN [5]



Observations

• EGSDE adds 
• Causal

• WearingLipstick attribute to 82%.
• HeavyMakeup: 69.28%

• Non-causal
• Attractive(37.61%) ?
• Young(24.76%) ?



ID-GEN for Spurious Correlation & Explainability



Takeaway!

• Given observational data and a causal graph,
• Conditional generative models are indeed sufficient to sample 

from any causal effect estimand.

• Codes are available at: github.com/musfiqshohan/IDGEN

Thank you!
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