Pretrained transformer efficiently learns low-dimensional target functions in-context

Kazusato Oko, Yujin Song, Taiji Suzuki, Denny Wu NeurIPS 2024 @ Vancouver Convention Centre

In-Context Learning (ICL)

- Pretrained transformers can recognize patterns from prompts without updating model parameters
- A very short context can be sufficient

Please guess the number that fits in the '?'.

Question

The pattern in the given pairs of numbers appears to be the sum of the two numbers.

So, the number that fits in the '?' is 32.

Prior Works

- Known fact: linear transformers can emulate linear regression on the context in its forward pass [ACDS23, MHM23, ZFB23...]
 - requires the same context length (N) as the amount of data needed for linear regression
 - higher vector dimension (of x) → higher required context length

Q: Can TF outperform learning algorithms applied directly to the prompt? (in terms of context length)

Our Main Message

Q: Can TF outperform learning algorithms working directly on prompt? A: Yes, by adapting to the problem structure during pretraining

Problem Setting

- Learning single-index functions in-context
- On *t*-th prompt, $\mathbf{x} \sim N(0, \mathbf{I}_d) \in \mathbb{R}^d$ and $y = \sigma_*^t(\mathbf{x}^\mathsf{T}\boldsymbol{\beta}^t) \begin{cases} y \text{ depends only on the} \\ \text{direction of } \boldsymbol{\beta}^t \end{cases}$
 - σ_*^t : random polynomial of degree P (nonlinear) • $\boldsymbol{\beta}^t \in \mathbb{R}^d$: random vector drawn from $r \ll d$ -dimensional subspace of \mathbb{R}^d

Problem distribution is low-dimensional

• Learning algorithms (kernel, NN...) on the test prompt need poly(d) samples ... Can pretrained TF outperform them? [GMMM21, BAGJ21]

 $\begin{aligned} \mathbf{x}_1 \to \mathbf{y}_1 &= \sigma_*^t(\mathbf{x}_1^\top \boldsymbol{\beta}^t) \\ \mathbf{x}_2 \to \mathbf{y}_2 &= \sigma_*^t(\mathbf{x}_2^\top \boldsymbol{\beta}^t) \\ \vdots \end{aligned}$

prompt t

Our Main Result

Required prompt length only depends on the inner dimension r

Baseline algorithms (kernel, NN) require d-dependent amount of data \rightarrow superiority under $r \ll d$ *Pretraining is nonconvex optimization... end-to-end optimization & generalization analysis

 Consider pretraining a single-layer transformer (nonlinear MLP+attention) on $\mathcal{Q}^{\Theta(Q)}$ tasks with a prompt length of $\mathcal{Q}^{\Theta(Q)}$ (Q: lowest degree of σ_* in $y = \sigma_*(x^\top \beta)$).

Pretraining

•
$$\hat{y}^q(X, y, x^q)$$

Estimation of y^q

I.One-step gradient descent on MLP weight

II.Ridge regression on attention matrix

• Theorem TF pretrained above achieves low test error ($\mathbb{E}[|\hat{y}^q - y^q|] = o_d(1)$) if context length N^{*} at test prompt satisfies N^{*} $\gtrsim r^{4P}$ (P: highest degree of σ_*)

Experiment

- We fix the inner dimension r = 8, while altering the ambient dimensiom d from 16 to 64, for the problem $y = \sigma_*^t(\mathbf{x}^\top \boldsymbol{\beta}^t)$.
- NN performance deteriorates with increasing d
- GPT-2 achieves low test error even when d is high

Takeaway & Mechanism

• Takeaway: TF can adapt to the prior distribution of problems via pretraining

• Mechanism: pretrained MLP neurons align with the *r*-dimensional subspace

 This "memorization" of the prior distribution of problems results in d-free context length complexity

Almost contained in the support of $\pmb{\beta}$

See you in Vancouver!

preprint: https://arxiv.org/abs/2411.02544

