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Goal

Learning a policy with deferral for treatment recommendation 

from observational data under hidden confounding.

Conditional Average Potential Outcomes (CAPOs)

Given 𝑋 = 𝑥, and a treatment 𝐴 = 𝑎, CAPO is defined as:

Y 𝑥, 𝑎 = 𝔼 𝑌(𝑎)|𝑋 = 𝑥

Marginal Sensitivity Model (MSM) 

Assumption: There exists Λ ≥ 1 such that the following holds 

almost surely under 𝑃𝑓𝑢𝑙𝑙:

Λ−1 ≤
𝑒 𝑥, 𝑢

1 − 𝑒 𝑥, 𝑢
/

𝑒 𝑥

1 − 𝑒 𝑥
≤ Λ

• 𝑒 𝑥 = 𝑃 𝐴 = 1 𝑋 = 𝑥 - the observed propensity score, 

• 𝑒 𝑥, 𝑢 = 𝑃𝑓𝑢𝑙𝑙 𝐴 = 1 𝑋 = 𝑥, 𝑈 = 𝑢 - the full propensity score, 

where 𝑈 is the hidden confounder.

CAPO-Based Policies

Cost-sensitive Objective

𝐿 𝜋 = 𝔼 𝑥,𝑦 ~𝑃,𝑚~𝑀|(𝑥,𝑦) 𝐶 𝑥, 𝜋 𝑥 𝕀𝜋 𝑥 ≠⊥ + 𝐶⊥ 𝑥,𝑚, 𝑦 𝕀𝜋 𝑥 =⊥

Challenge: 

𝐿(𝜋) is non-convex and computationally hard to optimize

Problem Setup
• Observational data under the Neyman-Rubin potential 

outcomes framework [Rubin, 2005].

• Data Distribution:

(𝑋, 𝐴, 𝑌(1), 𝑌(0), 𝑈) ∼ 𝑃𝑓𝑢𝑙𝑙
• Observed Data: 𝑋, 𝐴, 𝑌 ∼ 𝑃, with 𝑌 = 𝑌 𝐴 .
• Task: Learn a policy with deferral 𝜋:𝒳 → 0,1, ⊥ , where ⊥

means deferral to an expert.

CAPO Bounds
Let ℳ(Λ) the set of distributions consistent with the observed 

data (X,A,Y) and the MSM, then:

𝑌+ 𝑥, 𝑎 = max
𝑄∈ℳ(Λ)

𝔼[𝑌(𝑎)|𝑋 = 𝑥]

𝑌− 𝑥, 𝑎 = min
𝑄∈ℳ(Λ)

𝔼[𝑌(𝑎)|𝑋 = 𝑥]

Surrogate Loss Function
(Building on Mozannar and Sontag, 2020)

Policy: 𝜋𝑖: 𝒳 → ℝ where 𝜋 𝑥 = argmin
𝑖∈{0,1,⊥}

𝜋𝑖(𝑥).

CAPO Bounds: 𝑄 𝑥 = 𝑌+ 𝑥, 0 , 𝑌− 𝑥, 0 , 𝑌+ 𝑥, 1 , 𝑌− 𝑥, 1

Costs: 𝑐 0 = 𝐶(𝑥, 0), 𝑐 1 = 𝐶(𝑥, 1), and 𝑐 ⊥ = 𝐶⊥ 𝑥,𝑚, 𝑦 .
Weights: 𝑤𝑗(𝑧, 𝑄 𝑥 ) = max

𝑘∈{0,1,⊥}
𝑐 𝑘 − 𝑐(𝑗). 

Surrogate loss function for 𝑳:

𝐿𝐶𝐸 𝜋, 𝑧; 𝑄 = 

𝑗∈{0,1,⊥}

−𝑤𝑗 𝑧, 𝑄 𝑥 log(
exp(𝜋𝑗 𝑥 )

σ𝑘∈{0,1,⊥} exp(𝜋𝑘(𝑥))
)

Conservative Costs
𝐶 𝑥, 1 = 𝑌+ 𝑥, 0 − 𝑌− 𝑥, 1
𝐶 𝑥, 0 = 𝑌+ 𝑥, 1 − 𝑌− 𝑥, 0

𝐶⊥ 𝑥𝑖 , 𝑎, 𝑦𝑖 = ቊ
𝑌− 𝑥, 0 − 𝑦 , 𝑖𝑓 𝑎 = 1

𝑌− 𝑥, 1 − 𝑦 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Theoretical Guarantees
CAPO Bounds Estimation: using the B-Learner (Oprescu et 

al., 2023), with guarantees on validity and convergence rates.

Proven Properties (under mild assumptions on policy 

learners):

Cor 1. (Consistency): the surrogate loss 𝐿𝐶𝐸 achieves the 

same optimum as the machine-expert loss 𝐿.

Thm 1. (Costs Are Coherent): minimizing costs in 𝐿𝐶𝐸
ensures decisions are non-inferior to those by the expert or 

machine alone.

Thm 2. (Generalization Bound): a generalization bound is 

provided for L𝐶𝐸 .

Experiment
Synthetic Data

𝜉 ∼ 𝐵𝑒𝑟𝑛 0.5 , 𝑋 ∼ 𝒩 2𝜉 − 1 𝜇𝑥, 𝐼5 ,

𝑈 = 𝕀 𝑌 1 < 𝑌 0 ,
𝑌 𝐴 = 𝛽0

𝑇𝑥 + 𝕀 𝐴 = 1 𝛽𝑡𝑟𝑒𝑎𝑡
𝑇 𝑥 + 0.5𝛼𝜉𝕀 𝐴 = 1 + 𝜂 + 𝜔𝜉 + 𝜖

𝛽0 = 0, 0.5, −0.5,0,0 , 𝛽𝑡𝑟𝑒𝑎𝑡 = −1.5, 1, −1,−1.5,1,0.5 ,
𝜇𝑥 = −1,0.5, −1,0, −1 , 𝜂 = 2.5
𝛼 = −2,𝜔 = 1.5, and 𝜖 ∼ 𝒩 0,1 .

𝑒 𝑥 = 𝜎(𝛽𝑇𝑋) with 𝛽 = 0.075,−0.5, 0, −1, 0 .

𝑒 𝑋, 𝑈 =
Λ0𝑈+1−𝑈 𝑒(𝑋)

1+2 Λ0−1 𝑒 𝑋 −Λ0 𝑈+Λ0+ 1−Λ0 𝑒(𝑋)
, with the true Λ0 such 

that log Λ0 = 2.5.

IHDP Hidden Confounding

Policy regret for different levels of hidden confounding 

(MSM). lower policy regret is better. The true Λ0 is reported 

as a black vertical line. Human’s Policy: the human expert’s 

(𝐴) in the observed data, CRLogit Policy: [Kallus and 

Zhou,2020] ConfHAI Policy: [Gao and Yin, 

2023],CARED(ours), Pessimistic Policy and B-Learner 

Policy: CAPO-based from the B-Learner [Oprescu et al., 

2023],. Oracle Policy: the best true policy.

Policy regret for different levels of hidden confounding

(MSM). The true Λ0 is reported as a black vertical line.

Policy value for different rates of deferral.

Random Deferral Policy: that defers a randomly chosen

fraction of samples to the expert at each deferral rate.

𝜋pessimistic

𝑄
𝑥 =

1 if 𝑌− 𝑥, 1 − 𝑌+ 𝑥, 0 > 0

0 if 𝑌+ 𝑥, 1 − 𝑌− 𝑥, 0 < 0

1
0

otherwise, if 𝑌− 𝑥, 1 − 𝑌− 𝑥, 0 > 0
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝜋bounds
𝑄

𝑥 = ቐ
1 if 𝑌− 𝑥, 1 − 𝑌+ 𝑥, 0 > 0

0 if 𝑌+ 𝑥, 1 − 𝑌− 𝑥, 0 < 0
⊥ otherwise

Bounds Policy

Pessimistic Policy
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