NEURAL INFORMATION PROCESSING SYSTEMS

Goal

Learning a policy with deferral for treatment recommendation from observational data under hidden confounding.

Problem Setup

Observational data under the Neyman-Rubin potential outcomes framework [Rubin, 2005]. **Data Distribution:**

$$(X, A, Y(1), Y(0), U) \sim P_f$$

Observed Data: $(X, A, Y) \sim P$, with $Y =$
Task: Learn a **policy with deferral** π :
means deferral to an expert.

Conditional Average Potential Outcomes (CAPOs)

Given X = x, and a treatment A = a, CAPO is defined as: $Y(x,a) = \mathbb{E}[Y(a)|X = x]$

Marginal Sensitivity Model (MSM)

Assumption: There exists $\Lambda \geq 1$ such that the following holds almost surely under P_{full} :

$$\Lambda^{-1} \le \frac{e(x,u)}{1 - e(x,u)} / \frac{e(x)}{1 - e(x)}$$

- e(x) = P(A = 1 | X = x) the observed propensity score,
- $e(x,u) = P_{full}(A = 1 | X = x, U = u)$ the full propensity score, where U is the hidden confounder.

CAPO Bounds

Let $\mathcal{M}(\Lambda)$ the set of distributions consistent with the observed data (X,A,Y) and the MSM, then:

$$Y^{+}(x,a) = \max_{\substack{Q \in \mathcal{M}(\Lambda)}} \mathbb{E}[Y(a)|X]$$
$$Y^{-}(x,a) = \min_{\substack{Q \in \mathcal{M}(\Lambda)}} \mathbb{E}[Y(a)|X]$$

 $Y^{-}(x, 0)$

$$Y^+(x, 0)$$
 $Y^-(x, 1)$
 $Y(x, 0)$

When to Act and When to Ask: Policy Learning With Deferral Under Hidden Confounding

Marah Ghoummaid, Uri Shalit The Faculty of Data and Decision Sciences, Technion

incur loss: $C_{\perp}(x,m,y)$

incur loss: $C(x,\pi(x))$

full = Y(A). $\mathcal{X} \rightarrow \{0, 1, \bot\}, \text{ where } \bot$

 $\overline{\Lambda} \geq \overline{\Lambda}$

 $= \chi$ X = x

Pessimistic Policy $\pi_{\text{pessimistic}}^{\hat{Q}}(x) = \begin{cases} 0 \\ 1 \end{cases}$

Cost-sensitive Objective

 $L(\pi) = \mathbb{E}_{(x,y)\sim P,m\sim M|(x,y)} \Big[C\Big(x,\pi(x)\Big) \mathbb{I}_{\pi(x)\neq \perp} + C_{\perp}(x,m,y) \mathbb{I}_{\pi(x)=\perp} \Big]$

Challenge:

 $L(\pi)$ is non-convex and computationally hard to optimize

Surrogate Loss Function (Building on Mozannar and Sontag, 2020)

Policy: $\pi_i: \mathcal{X} \to \mathbb{R}$ w

CAPO Bounds: $\hat{Q}(x)$ **Costs:** c(0) = C(x, 0)Weights: $w^{j}(z, \hat{Q}(x))$

Surrogate loss fund

 $L_{CE}(\pi, z; \hat{Q}) =$ *j*∈{0,1,⊥}

Conservative Costs $C_{\perp}(x_i, a)$

Theoretical Guarantees CAPO Bounds Estimation: using the B-Learner (Oprescu et al., 2023), with guarantees on validity and convergence rates.

learners):

Cor 1. (Consistency): the surrogate loss L_{CE} achieves the same optimum as the machine-expert loss L. Thm 1. (Costs Are Coherent): minimizing costs in L_{CE} ensures decisions are non-inferior to those by the expert or machine alone. Thm 2. (Generalization Bound): a generalization bound is

provided for L_{CE} .

CAPO-Based Policies

Bounds Policy $\pi_{\text{bounds}}^{\hat{Q}}(x) = \begin{cases} 1 & \text{if } \hat{Y}^{-}(x,1) - \hat{Y}^{+}(x,0) > 0 \\ 0 & \text{if } \hat{Y}^{+}(x,1) - \hat{Y}^{-}(x,0) < 0 \\ 1 & \text{otherwise} \end{cases}$ if $\hat{Y}^{-}(x, 1) - \hat{Y}^{+}(x, 0) > 0$ if $\hat{Y}^{+}(x, 1) - \hat{Y}^{-}(x, 0) < 0$ otherwise, if $\hat{Y}^{-}(x, 1) - \hat{Y}^{-}(x, 0) > 0$ otherwise

where
$$\pi(x) = \underset{i \in \{0,1,\perp\}}{\operatorname{argmin}} \pi_i(x)$$
.
 $x) = \left(\hat{Y}^+(x,0), \hat{Y}^-(x,0), \hat{Y}^+(x,1), \hat{Y}^-(x,1)\right)$
 $x) = C(x,1), \text{ and } c(\perp) = C_{\perp}(x,m,y)$.
 $x) = \max_{k \in \{0,1,\perp\}} c(k) - c(j)$.
 $x \in \{0,1,\perp\}$

$$-w^{j}\left(z, \ \widehat{Q}(x)\right)\log\left(\frac{\exp(\pi_{j}(x))}{\sum_{k\in\{0,1,L\}}\exp(\pi_{k}(x))}\right)$$

$$\begin{aligned} f(x,1) &= Y^+(x,0) - Y^-(x,1) \\ f(x,0) &= Y^+(x,1) - Y^-(x,0) \\ g(x,y_i) &= \begin{cases} Y^-(x,0) - y &, if \ a = 1 \\ Y^-(x,1) - y &, otherwise \end{cases} \end{aligned}$$

Proven Properties (under mild assumptions on policy

