Transductive Active Learning: Theory and Applications

Jonas Hübotter, Bhavya Sukhija, Lenart Treven, Yarden As, Andreas Krause

ETHzürich

Motivation

pre-training

Motivation

Setting

- $\mathcal{S} \subseteq \mathcal{X}$ sample space
- $\mathscr{A} \subseteq \mathscr{X}$ target space
- Unknown function f over ${\mathcal X}$

Goal: Learn f within \mathscr{A} by sampling from \mathscr{S}

We call this Transductive Active Learning

om S

4

Transductive Active Learning "only learn what is needed to solve a given task" [MacKay, 1992]

(Inductive) Active Learning "learn as much as you can"

studied in most prior works

Algorithms for transductive active learning

Probabilistic model of f:

- prior p(f)
- likelihood $p(D \mid f)$ of data D
- posterior $p(f \mid D)$

Algorithms: select data to minimize *posterior* uncertainty within \mathscr{A} [MacKay, 1992]

Contributions

[MacKay, 1992]

When f is a Gaussian process these algorithms are tractable:

- Theory: rates for the uniform convergence of uncertainty over \mathscr{A}
- **Applications:**
 - (1) active fine-tuning of neural networks
 - (2) safe Bayesian optimization

Algorithms: select the next sample to minimize *posterior* uncertainty within \mathscr{A}

Illustration on a Gaussian process with RBF kernel

$\sigma_n^2(\mathbf{x}) = \text{posterior variance at } \mathbf{x} \in \mathscr{A}$

A

$$\sigma_n^2(\mathbf{x}) \to 0 \text{ as } n \to \infty$$

e.g., by repeatedly sampling *x*

what about the point x'?

 $\sigma_n^2(\mathbf{x}') \ge \eta_{\mathcal{S}}^2(\mathbf{x}') = \operatorname{Var}[f(\mathbf{x}') \mid f(\mathcal{S})]$

is the irreducible uncertainty:

S

Uncertainty bound (informal) For every $\mathbf{x}' \in \mathcal{A}$: $\sigma_n^2(\mathbf{x}') - \eta_{\mathcal{S}}^2(\mathbf{x}') \leq \sigma_n^2(\mathbf{x}')$

irreducible

Agnostic error bound (informal) If $f \in \mathcal{H}_k(\mathcal{X})$, then for every $x' \in \mathcal{A}$ with probability at least $1 - \delta$: $|f(\mathbf{x}') - \mathbb{E}[f(\mathbf{x}') \mid D_n]|^2 \le \beta_n^2(\delta) [\eta_n^2]$ prediction

$$\leq C\gamma_{\mathcal{A},\mathcal{S}}(n)/\sqrt{n}$$

 $\rightarrow 0$ for many kernels

where $\gamma_{\mathscr{A},\mathscr{S}}(n) = \max_{X \subset \mathscr{S}} I(f(\mathscr{A}); y(X))$ |X| = n

$$\frac{2}{s}(\mathbf{x'}) + \frac{C\gamma_{\mathscr{A},\mathscr{S}}(n)}{\sqrt{n}}$$

irreducible

reducible

Applications

O Active fine-tuning

Given:

- pre-trained model
- \mathcal{S} training set
- A test set

Goal: Leverage representations of pre-trained model to accelerate learning a good predictor of \mathscr{A} .

pre-trainin

• Active fine-tuning of neural networks

Applications

O Active fine-tuning

Given:

- pre-trained model
- \mathcal{S} training set
- A test set

Goal: Leverage representations of pre-trained model to accelerate learning a good predictor of \mathscr{A} .

② Safe Bayesian optimization Task: Optimize unknown function under unknown constraints that have to be satisfied at all times.

- S_n pessimistic safe set
- \mathscr{A}_n set of potential safe optima **Theory:** *Tighter* guarantees that *generalize* to continuous settings.

Thanks for your attention!

jonas.huebotter@inf.ethz.ch