Out-of-Distribution Detection with a Single Unconditional Diffusion Model

Collaborative, Learning, and Adaptive Robots

NeurIPS 2024

Alvin Heng, Alexandre H. Thiery, Harold Soh

Department of Statistics and Data Science **Faculty of Science**

Out-of-Distribution Detection

- Given data samples $x_{train} \sim p(x)$, determine if a test sample $x_{test} \sim p(x)$.
- Deep neural networks shown to be overconfident on OOD samples. \bullet
- Train a generative model $p_{\theta}(x)$ from x_{train} and evaluate $p_{\theta}(x_{test})$.

Motivation: Scores for OOD Detection

Assume two distributions $\phi_0(x)$ and $\psi_0(x)$ and their respective score estimates ϵ_{ϕ} and ϵ_{ψ} lacksquare

$$D_{\mathrm{KL}}(\phi_0 \| \psi_0) = \frac{1}{2} \int_0^T \mathbb{E}_{\mathbf{x} \sim \phi_t} \frac{g(t)^2}{\sigma_t} \| \boldsymbol{\epsilon}_{\phi}(\mathbf{x}_t, t) - \boldsymbol{\epsilon}_{\psi}(\mathbf{x}_t, t) \|_2^2 \,\mathrm{d}t + D_{\mathrm{KL}}(\phi_T \| \psi_T).$$

- $\sum ||\epsilon_{ID} \epsilon_{OOD}||^2$ different for different distributions => an OOD statistic, but we only have ϵ_{ID} .
- Key insight: a single model can approximate scores for multiple distributions! \bullet

ImageNet Model

CelebA Model

3

DDIM ODE:

the diffusion path for OOD detection

DiffPath

$\frac{\mathrm{d}\boldsymbol{\epsilon}_{\theta}}{\mathrm{d}\gamma_{t}} \approx \frac{\boldsymbol{\epsilon}_{\theta}(\mathbf{x}_{t+\Delta t}, t+\Delta t) - \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_{t}, t)}{\Delta t}$ $\bar{\mathbf{x}}_{t_{n+1}} = \bar{\mathbf{x}}_{t_n} + h_n \left(\boldsymbol{\epsilon}_{\theta}(\mathbf{x}_{t_n}, t_n) \right) + \frac{1}{2!} h_n^2 \left| \frac{\mathrm{d}\boldsymbol{\epsilon}_{\theta}}{\mathrm{d}\gamma_t} \right|_{(\bar{\mathbf{x}}_{t_n}, t_n)} + \dots$ Measure the first ($\sum ||\epsilon||^2$) and second ($\sum ||d\epsilon/dt||^2$) derivatives of

Pseudocode of DiffPath

Algorithm 1 OOD detection with DiffPath

Input: Trained DM ϵ_{θ} , ID train set $\mathbf{X}_{\text{train}}$, test samples \mathbf{X}_{test} , empty lists L_{train} and L_{test} **Output:** OOD scores of test samples $S_{\theta}(\mathbf{X}_{\text{test}})$

- 1: for \mathbf{x}_0 in $\mathbf{X}_{\text{train}}$ do
- $\{oldsymbol{\epsilon}_{ heta}(\mathbf{x}_t,t)\}_{t=0}^T \leftarrow \texttt{DDIMInversion}(\mathbf{x}_0,oldsymbol{\epsilon}_{ heta})$ 2:
- Calculate OOD statistic using $\{\epsilon_{\theta}(\mathbf{x}_t, t)\}_{t=0}^T$ 3:
- Append statistic to L_{train} 4:

5: end for

- $p_{\text{train}}(\cdot) \leftarrow \text{fit density estimate to } L_{\text{train}}$ 6:
- $L_{\text{test}} \leftarrow \text{Repeat lines } 1 5 \text{ with } \mathbf{X}_{\text{test}}$
- **return** $p_{\text{train}}(l)$ for every l in L_{test} 8:

 \triangleright Integrate Eq. 7 from t = 0 to T

⊳ e.g., KDE, GMM

Experimental Results

	C10 vs				SVHN vs				CelebA vs					
Method	SVHN	CelebA	C 100	Textures	C10	CelebA	C 100	Textures	C 10	SVHN	C100	Textures	Average	NFE
IC	0.950	0.863	0.736	-	-	-	-	-	-	-	-	-	-	-
IGEBM	0.630	0.700	0.500	0.480	-	-	-	-	-	-	-	-	-	-
VAEBM	0.830	0.770	0.620	-	-	-	-	-	-	-	-	-	-	-
Improved CD	0.910	-	0.830	0.880	-	-	-	-	-	-	-	-	-	-
DoS	0.955	0.995	0.571	-	0.962	1.00	0.965	-	0.949	0.997	0.956	-	0.928	-
WAIC ¹	0.143	0.928	0.532	-	0.802	0.991	0.831	-	0.507	0.139	0.535	-	0.601	-
TT^1	0.870	0.848	0.548	-	0.970	1.00	0.965	-	0.634	0.982	0.671	-	0.832	-
LR^1	0.064	0.914	0.520	-	0.819	0.912	0.779	-	0.323	0.028	0.357	-	0.524	-
Diffusion-based														
NLL	0.091	0.574	0.521	0.609	0.990	0.999	0.992	0.983	0.814	0.105	0.786	0.809	0.689	1000
IC	0.921	0.516	0.519	0.553	0.080	0.028	0.100	0.174	0.485	0.972	0.510	0.559	0.451	1000
MSMA	0.957	1.00	0.615	0.986	0.976	0.995	0.980	0. 9 96	0.910	0.996	0.927	0. 9 99	0.945	10
DDPM-OOD	0.390	0.659	0.536	0.598	0.951	0.986	0.945	0.910	0.795	0.636	0.778	0.773	0.746	350
LMD	0.992	0.557	0.604	0.667	0 .919	0.890	0.881	0.914	<u>0.989</u>	1.00	<u>0.979</u>	0.972	0.865	10^4
Ours														
DiffPath-6D-ImageNet	0.856	0.502	0.580	0.841	0.943	0.964	0.954	0. 969	0.807	0.98 1	0.843	0.964	0.850	10
DiffPath-6D-CelebA	0.910	0.897	0.590	<u>0.923</u>	0.939	0.979	0.953	0.981	0 .9 98	1.00	0 .998	0 .999	<u>0.931</u>	10

6

Summary

School of Computing

- Propose to measure rate-of-change and curvature of diffusion paths for OOD detection.
- Uses a single model across tasks as opposed to conventional methods requiring individually-trained models.

alvin.heng@u.nus.edu or harold@comp.nus.edu.sg

For More Information

8