

Episodic Future Thinking Mechanism for Multi-agentReinforcement Learning

Dongsu Lee and Minhae Kwon

Brain and Machine Intelligence Lab. (BMIL)
Soongsil University
Seoul, Republic of Korea

Collaboration without prior coordination

Training

Execution

In real-world settings, such interactions often involve heterogeneous agents, which has different behavioral pattern

- → limited initial knowledge about other agents
- → partially observability and restricted communication

Adaptive decision-making in multi-agent system

How does an agent make an adaptive decision in a multi-agent system with heterogeneity?

Phase 1: Understanding agent

Phase 2: Future thinking

Goal: Understand other agents, then predict future

Agent modeling in reinforcement learning

How do we parameterize the optimal agent efficiently?

→ Parameterize the reward function in forward process

$$R(s_t; a_t; \mathbf{c}) = \sum_{n=1}^{N} c_n \mathcal{R}_n = c_1 \mathcal{R}_1 + c_2 \mathcal{R}_2 + \dots + c_N \mathcal{R}_N$$

Forward modeling

$$\pi(\cdot|s;\mathbf{c})$$

Inverse modeling

Advantages of reward parameterization

- Low-sized vector
- Explainability

Multi-character agent for inverse modeling

Parameterize the optimal agent with the character parameters

Multi-character agent for inverse modeling

Goal: find a character that explains the observation-action pair of a target agent best

$$\mathbf{c}^* = \arg\max_{\mathbf{c}} \ln \Pi(o, a_{i,1:T} | \mathbf{c})$$

Method: Maximum likelihood estimation with gradient ascent [Kwon2020]

Predict neighbor agents' actions based on the inferred characters

Predict the next observation based on its current observation and predicted neighbor's actions

Choose an action at a given predicted observation, which updates environment

Conclusions

EFTM optimizes multi-character policy through reward parameterization

- → Model a character of other agents from their behavioral pattern
- → Predict upcoming future to make an adaptive decision

This strategy improves MARL robustness as character diversity increases!

Project website

