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Collaboration without prior coordination

Training Execution
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In real-world settings, such interactions often involve heterogeneous agents,
which has different behavioral pattern

— limited initial knowledge about other agents
— partially observability and restricted communication



Adaptive decision-making in multi-agent system

4

How does an agent make an adaptive decision
in a multi-agent system with heterogeneity?
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Phase 1: Understanding agent Phase 2: Future thinking
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Goal: Understand other agents, then predict future



ENVIRONMENT

Agent modeling 1n reinforcement learning

How do we parameterize the optimal agent efficiently?
— Parameterize the reward function in forward process
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- Low-sized vector
- Explainability



Multi-character agent for inverse modeling

Parameterize the optimal agent with the character parameters
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Multi-character agent for inverse modeling

Goal: find a character that explains the observation-action pair of a target agent best
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Method: Maximum likelihood estimation with gradient ascent kwon2o)
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[Kwon2020] M. Kwon et al., “Inverse Rational Control with Partially Observable Continuous Nonlinear Dynamics,” NeurlPS2020



Decision-making with episodic future thinking

agent i’s
future thinking

real world




Decision-making with episodic future thinking

agent i’s
future thinking

real world
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W Predict neighbor agents’ actions based on the inferred
llc ( | S, Ck) characters



Decision-making with episodic future thinking

agent i’s
future thinkin
s real world
Q Predict the next observation based on its current

A _ observation and predicted neighbor’s actions
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Decision-making with episodic future thinking

agent i’s
future thinking

real world

Choose an action at a given predicted observation,
which updates environment




Normalized reward

Conclusions

EFTM optimizes multi-character policy through reward parameterization
— Model a character of other agents from their behavioral pattern
— Predict upcoming future to make an adaptive decision

This strategy improves MARL robustness as character diversity increases!
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