



Sebastian Zeng $^{\dagger/\ddagger}$, Florian Graf † , Martin Uray $^{\dagger/\ddagger}$, Stefan Huber ‡ , Roland Kwitt †

[†]University of Salzburg, Austria [‡]Josef Ressel Centre for Intelligent and Secure Industrial Automation University of Applied Sciences, Salzburg, Austria

• Observation of a coherently moving flock of birds, understood as an evolving 3D point cloud $\mathcal{P} = \{\mathbf{x}^k\}_{k=1}^K$:

• Observation of a coherently moving flock of birds, understood as an evolving 3D point cloud $\mathcal{P} = \{\mathbf{x}^k\}_{k=1}^K$:

ullet The D'Orsogna model [D'Orsogna et al. '06] describes the dynamics of individual entities ${f x}^k$

$$m\ddot{\mathbf{x}}^k = \left(\alpha - \beta \|\dot{\mathbf{x}}^k\|^2\right)\dot{\mathbf{x}}^k - \frac{1}{K}\nabla_{\mathbf{x}^k}\sum_{l \neq k} \underbrace{U\left(\|\mathbf{x}^k - \mathbf{x}^l\|, C_r, l_r\right)}_{\text{Attraction & Repulsion}}.$$

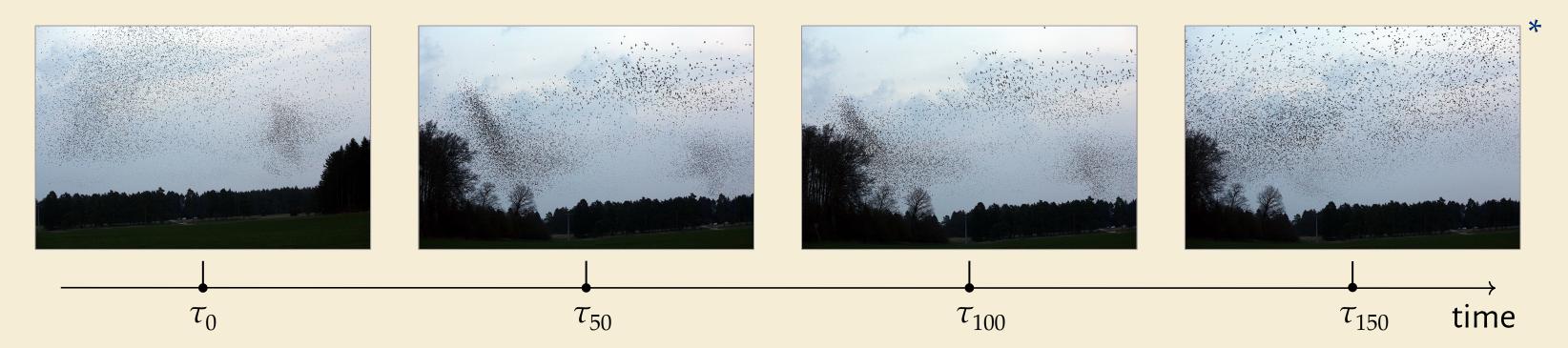
• Observation of a coherently moving flock of birds, understood as an evolving 3D point cloud $\mathcal{P} = \{\mathbf{x}^k\}_{k=1}^K$:

ullet The D'Orsogna model [D'Orsogna et al. '06] describes the dynamics of individual entities ${f x}^k$

$$m\ddot{\mathbf{x}}^k = \left(\alpha - \beta \|\dot{\mathbf{x}}^k\|^2\right)\dot{\mathbf{x}}^k - \frac{1}{K}\nabla_{\mathbf{x}^k} \sum_{l \neq k} \underbrace{U\left(\|\mathbf{x}^k - \mathbf{x}^l\|, \mathbf{C}_r, \mathbf{l}_r\right)}_{\text{Attraction & Repulsion}}.$$

- Solving the **inverse problem**, i.e., predicting $\beta = (m, \alpha, C_r, l_r)$, is inherently difficult due to:
 - the large number of observed entities, and
 - the difficulty of identifying individual motion trajectories $\mathbf{x}^k(t)$.

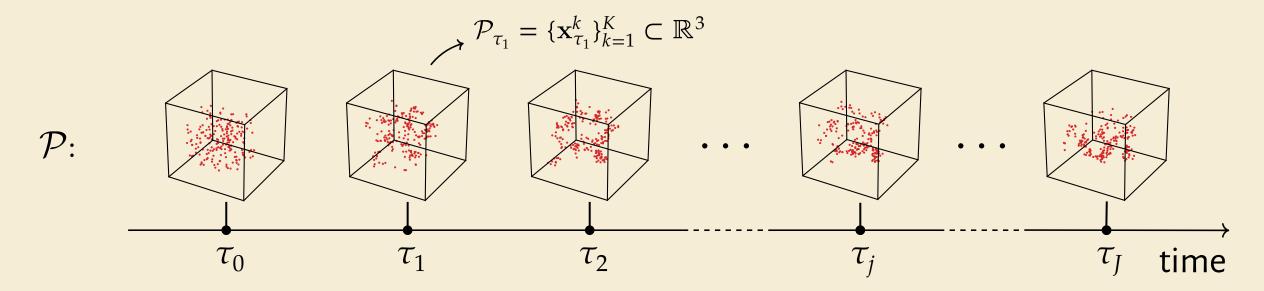
• Observation of a coherently moving flock of birds, understood as an evolving 3D point cloud $\mathcal{P} = \{\mathbf{x}^k\}_{k=1}^K$:



- ullet The D'Orsogna model [D'Orsogna et al. '06] describes the dynamics of individual entities \mathbf{x}^k
 - To predict the models parameters β , understanding the evolving behavioral patterns of a collective is key.
- Solving th
- Hence, we learn the **dynamics in the topology** of time evolving **point clouds**.
- o the large number of observed entities, and
- the difficulty of identifying individual motion trajectories $\mathbf{x}^k(t)$.

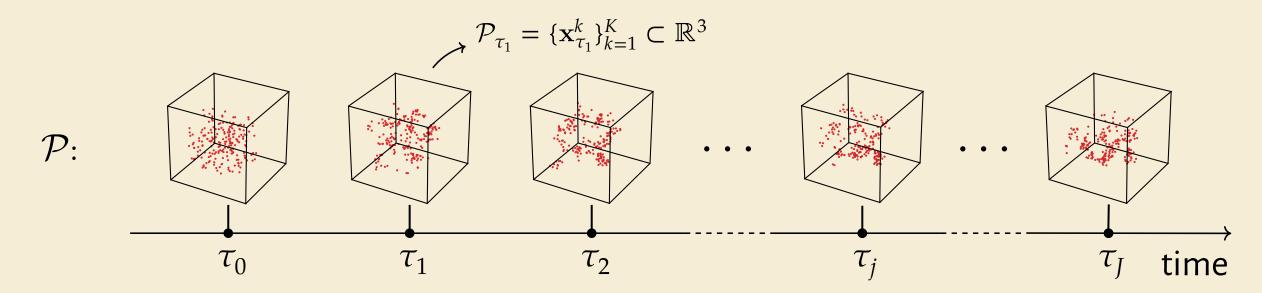
Problem setting

• For learning, we consider datasets of N time-evolving 3D point clouds $\mathcal{P}^1, \ldots, \mathcal{P}^N$; e.g.,



Problem setting

• For learning, we consider datasets of N time-evolving 3D point clouds $\mathcal{P}^1, \ldots, \mathcal{P}^N$; e.g.,



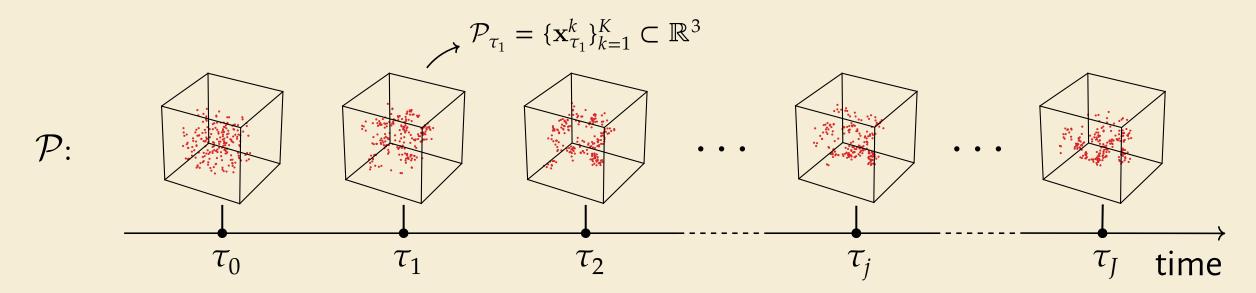
- We assume...
 - (1) individual trajectories of points \mathbf{x}^k are governed by a coupled equation of motion

$$\ddot{\mathbf{x}}^k = f_{\beta}\left(\{\mathbf{x}^l\}_{l=1}^K, \dot{\mathbf{x}}^k\right) ,$$

- (2) β control such motions and specify (local) interactions among neighboring points, <u>and</u>
- (3) the dynamics in the topology of the point clouds are determined by a simpler latent process ${f Z}$.

Problem setting

• For learning, we consider datasets of N time-evolving 3D point clouds $\mathcal{P}^1,\ldots,\mathcal{P}^N$; e.g.,



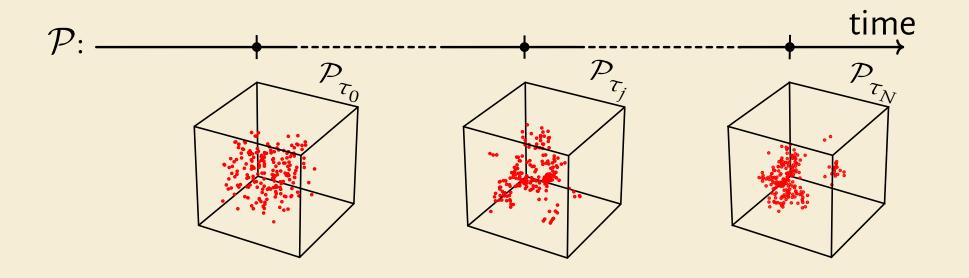
- We assume...
 - (1) individual trajectories of points \mathbf{x}^k are governed by a coupled equation of motion

$$\ddot{\mathbf{x}}^k = f_{\beta}\left(\{\mathbf{x}^l\}_{l=1}^K, \dot{\mathbf{x}}^k\right) ,$$

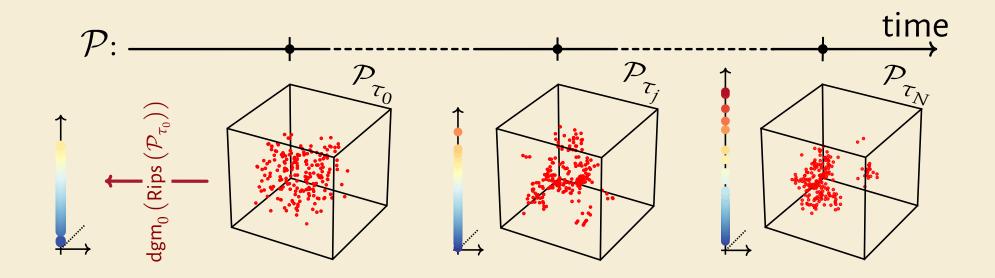
- (2) β control such motions and specify (local) interactions among neighboring points, <u>and</u>
- (3) the dynamics in the topology of the point clouds are determined by a simpler latent process ${f Z}$.

We seek to learn \mathbf{Z} and thus predict $\boldsymbol{\beta}$!

• For each sequence \mathcal{P} , we pre-compute topological features **per time point**, by...

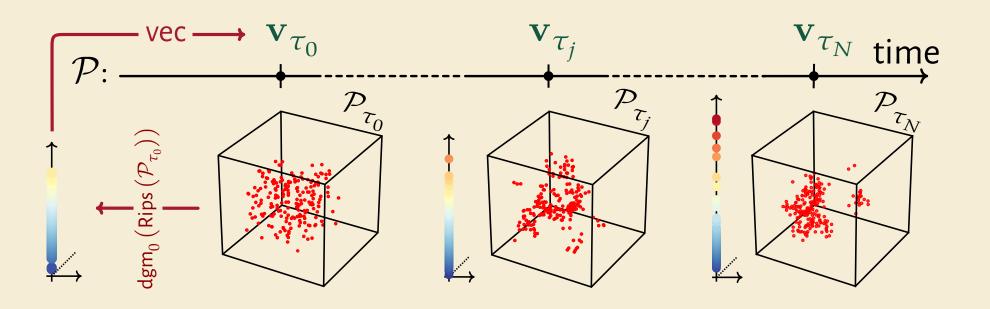


• For each sequence \mathcal{P} , we pre-compute topological features **per time point**, by...



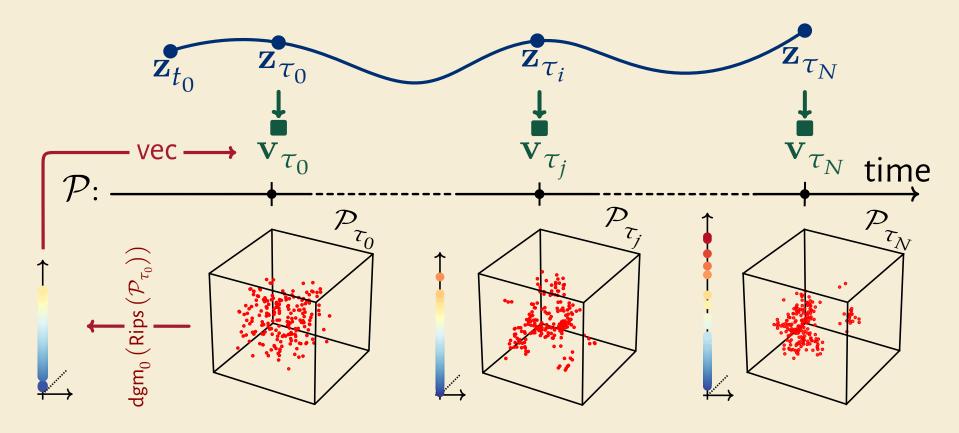
(1) applying Vietoris-Rips persistent homology computation, Rips, and

• For each sequence \mathcal{P} , we pre-compute topological features **per time point**, by...



- (1) applying Vietoris-Rips persistent homology computation, Rips, and
- (2) vectorizing the persistence diagrams, dgm(Rips), using Hofer et al. '19.

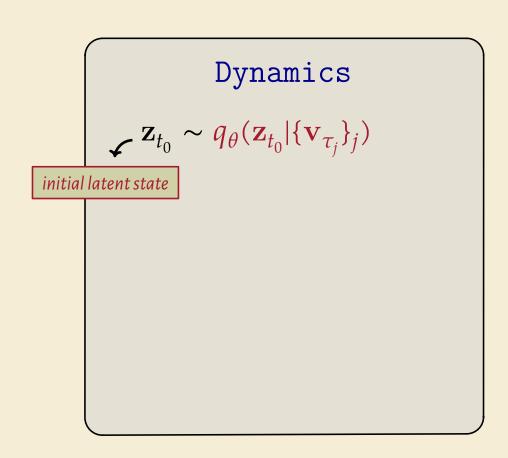
• For each sequence \mathcal{P} , we pre-compute topological features **per time point**, by...

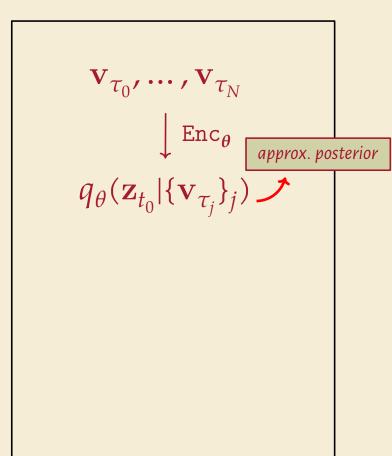


- (1) applying Vietoris-Rips persistent homology computation, Rips, and
- (2) vectorizing the persistence diagrams, dgm(Rips), using Hofer et al. '19.
 - **Prior works** predominantly extracted **one** topological summary over time.
 - We learn a latent process **Z** whose paths $\{\mathbf{z}_{\tau_j}\}_j$ can (i) reproduce the vectorizations, and (ii) serve as input for predicting $\boldsymbol{\beta}$.

A model incarnation • **Z** is modeled via a neural ODE by Rubanova et al. '19 and learned in a variational Bayes regime.

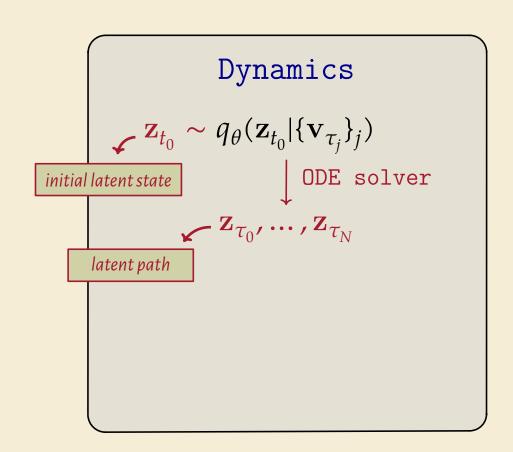
- **Z** is modeled via a neural ODE by Rubanova et al. '19 and learned in a variational Bayes regime.
- In this setting one chooses...

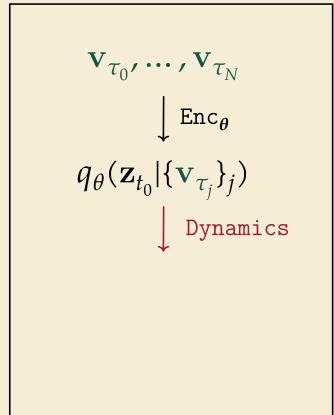




(1) an encoder network (Enc_{θ})

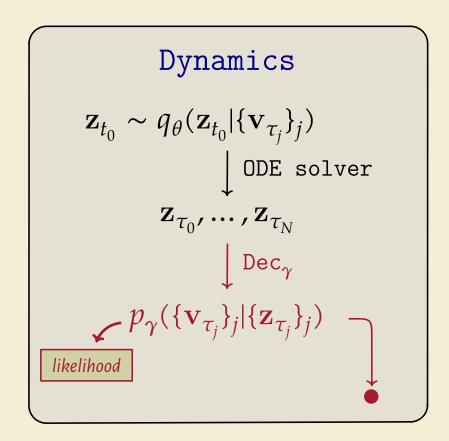
- **Z** is modeled via a neural ODE by Rubanova et al. '19 and learned in a variational Bayes regime.
- In this setting one chooses...

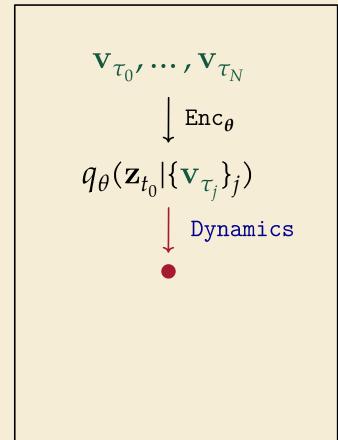




- (1) an encoder network $(\operatorname{Enc}_{\theta})$,
- (2) an ODE solver

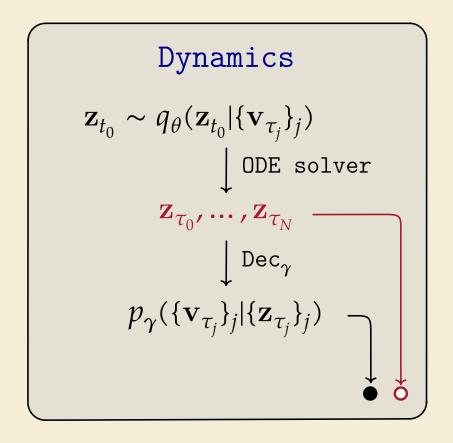
- \bullet **Z** is modeled via a neural ODE by Rubanova et al. '19 and learned in a variational Bayes regime.
- In this setting one chooses...

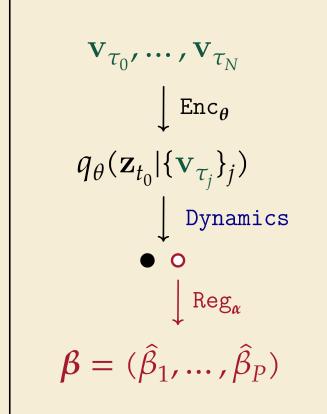




- (1) an encoder network $(\operatorname{Enc}_{\theta})$,
- (2) an ODE solver,
- (3) a suitable decoder network (Dec_{γ})

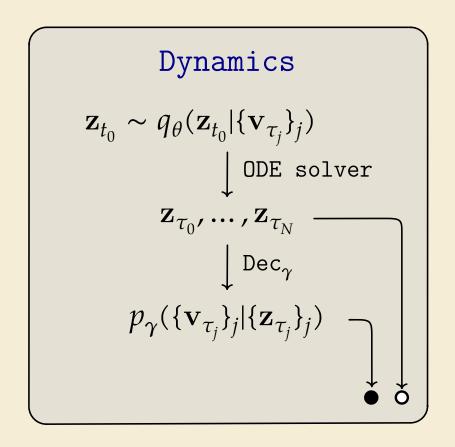
- **Z** is modeled via a neural ODE by Rubanova et al. '19 and learned in a variational Bayes regime.
- In this setting one chooses...

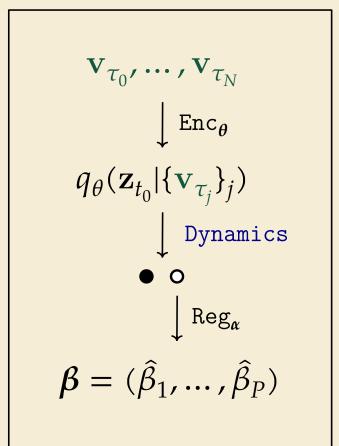




- (1) an encoder network $(\operatorname{Enc}_{\theta})$,
- (2) an ODE solver,
- (3) a suitable decoder network (Dec_{γ}), and
- (4) a suitable regression network (Reg_{α}) .

- **Z** is modeled via a neural ODE by Rubanova et al. '19 and learned in a variational Bayes regime.
- In this setting one chooses...





- (1) an encoder network $(\operatorname{Enc}_{\theta})$,
- (2) an ODE solver,
- (3) a suitable decoder network (Dec_{γ}), and
- (4) a suitable regression network (Reg_{α}).

• The model is trained upon choosing a prior $p(\mathbf{z}_{t_0})$ and maximizing (ELBO – loss_{aux}), i.e.,

$$\theta, \gamma, \alpha = \underset{\theta, \gamma, \alpha}{\operatorname{arg\,max}} \underbrace{\mathbb{E}_{\mathbf{z}_{t_0} \sim q_{\theta}} \left[\sum_{j} \log p_{\gamma} \left(\mathbf{v}_{\tau_j} | \mathbf{z}_{\tau_j} \right) \right] - \mathcal{D}_{\mathsf{KL}} \left(q_{\theta} \left(\mathbf{z}_{t_0} | \{ \mathbf{v}_{\tau_j} \}_j \right) \| p \left(\mathbf{z}_{t_0} \right) \right)}_{\mathsf{ELBO}} - \underbrace{\mathsf{loss}_{\mathsf{aux}} \left(\mathsf{Reg}_{\alpha} (\{ \mathbf{z}_{\tau_j} \}_j), \beta \right)}_{\mathsf{auxiliary loss}}.$$

		⊘ VE ↑	Ø SMAPE↓
dorsogna-10k	Ours	0.851 ±0.008	0.097 ±0.005
	PSK	0.828 <u>+</u> 0.016	0.096 <u>+</u> 0.006
	Crocker Stacks	0.746 <u>+</u> 0.023	0.150 <u>+</u> 0.005
vicsek-10k	Ours	0.579 ±0.034	0.146 ±0.006
	PSK	0.466 <u>+</u> 0.009	0.173 <u>+</u> 0.003
	Crocker Stacks	0.345 <u>+</u> 0.005	0.190 <u>+</u> 0.001

• Listed are parameter regression results from two models [D'Orsogna et al. '06 & Vicsek et al. '95] for collective behavior with $|\beta|=4$, resp.

		⊘ VE ↑	Ø SMAPE↓
dorsogna-10k	Ours	0.851 ±0.008	0.097 ±0.005
	PSK	0.828 <u>+</u> 0.016	0.096 <u>+</u> 0.006
	Crocker Stacks	0.746 <u>+</u> 0.023	0.150 <u>+</u> 0.005
vicsek-10k	Ours	0.579 ±0.034	0.146 ±0.006
	PSK	0.466 <u>+</u> 0.009	0.173 <u>+</u> 0.003
	Crocker Stacks	0.345 <u>+</u> 0.005	0.190 <u>+</u> 0.001

- Listed are parameter regression results from two models [D'Orsogna et al. '06 & Vicsek et al. '95] for collective behavior with $|\beta|=4$, resp.
- Each dataset contains 10,000 point cloud sequences simulated using SiSyPHE [Diez '21].

		⊘ VE ↑	Ø SMAPE↓
dorsogna-10k	Ours	0.851 ±0.008	0.097 ±0.005
	PSK	0.828 <u>+</u> 0.016	0.096 <u>+</u> 0.006
	Crocker Stacks	0.746 <u>+</u> 0.023	0.150 <u>+</u> 0.005
vicsek-10k	Ours	0.579 ±0.034	0.146 ±0.006
	PSK	0.466 <u>+</u> 0.009	0.173 <u>+</u> 0.003
	Crocker Stacks	0.345 <u>+</u> 0.005	0.190 <u>+</u> 0.001

- Listed are parameter regression results from two models [D'Orsogna et al. '06 & Vicsek et al. '95] for collective behavior with $|\beta|=4$, resp.
- Each dataset contains 10,000 point cloud sequences simulated using SiSyPHE [Diez '21].
- We compare against *path signature kernel (PSK)* [Giusti & Lee '23] & *crocker stacks* [Xian et al. '22] and report *Variance Explained (VE)* and *Symmetric Mean Absolute Percentage Error (SMAPE)*.

		⊘ VE ↑	⊘ SMAPE ↓
dorsogna-10k	Ours	0.851 ±0.008	0.097 ±0.005
	PSK	0.828 <u>+</u> 0.016	0.096 <u>+</u> 0.006
	Crocker Stacks	0.746 <u>+</u> 0.023	0.150 <u>+</u> 0.005
vicsek-10k	Ours	0.579 ±0.034	0.146 ±0.006
	PSK	0.466 <u>+</u> 0.009	0.173 <u>+</u> 0.003
	Crocker Stacks	0.345 <u>+</u> 0.005	0.190 <u>+</u> 0.001

- Listed are parameter regression results from two models [D'Orsogna et al. '06 & Vicsek et al. '95] for collective behavior with $|\beta|=4$, resp.
- Each dataset contains 10,000 point cloud sequences simulated using SiSyPHE [Diez '21].
- We compare against *path signature kernel (PSK)* [Giusti & Lee '23] & *crocker stacks* [Xian et al. '22] and report *Variance Explained (VE)* and *Symmetric Mean Absolute Percentage Error (SMAPE)*.
- Overall, Neural Persistence Dynamics (Ours) largely outperforms the state-of-the-art in all tasks.

In summary, Neural Persistence Dynamics...

- (1) scales to a large number of observation sequences,
- (2) is trained with **fixed hyperparameters** across all datasets, <u>and</u>
- (3) **outperforms** the state-of-the-art across numerous regression tasks.

In summary, Neural Persistence Dynamics...

- (1) scales to a large number of observation sequences,
- (2) is trained with **fixed hyperparameters** across all datasets, <u>and</u>
- (3) outperforms the state-of-the-art across numerous regression tasks.

Thanks for your attention!

Come see us at our **poster**.

Fr. 13 Dec 11 a.m. PST – 2 p.m. PST @ Poster Session 5

Full source code is available!

References

[Y. Rubanova, R. T. Q. Chen & D. Duvenaud]

"Latent Ordinary Differential Equations for Irregularly-Sampled Time Series".

In: NeurIPS. 2019.

[C. Hofer, R. Kwitt & M. Niethammer]

"Learning representations of persistence barcodes".

In: JMLR, 20, 126, 1–45, 2019.

[M. R. D'Orsogna, Y. L. Chuang, A. L. Bertozzi & L. S. Chayes]

"Self-Propelled Particles with Soft-Core Interactions: Patterns, Stability, and Collapse".

In: Phys. Rev. Lett., 96, 104302, 2006.

[T. Vicsek, A. Czirók, E. Ben-Jacob, I. Cohen & O. Shochet]

"Novel type of phase transition in a system of self-driven particles".

In: Phys. Rev. Lett., 75, 6. 1226-1229, 1995.

[A. Diez]

"SiSyPHE: A Python package for the Simulation of Systems of interacting mean-field Particles with High Efficiency".

In: J. Open Source Softw., 65, 3653, 6, 2021

[C. Giusti & D. Lee]

"Signatures, Lipschitz-Free Spaces, and Paths of Persistence Diagrams".

In: SIAM J. Appl. Algebra Geom., 4, 7, 828-866, 2023.

[L. Xian, H. Adams, C. M. Topaz & L. Ziegelmeier]

"Capturing dynamics of time-varying data via topology".

In: Found. Data Sci., 1, 4, 1-36, 2022.