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Overview

We learn models of population dynamics of physical systems that feature stochastic and mean-

field effects and that depend on physics parameters.

Building on the Benamou-Brenier formula and action matching [2], we infer population

dynamics from a simulation-free variational objective.

The inferred gradient fields can then be used to predict the populations dynamics for unseen

physics parameters.

Higher-order quadrature is critical for accurately estimating the training objective.

HOAM yields orders of magnitude speed-up compared to classical numerical models.

Parameter-dependent population dynamics

Population dynamics of Xt,µ ∼ ρt,µ can be described by the continuity equation

∂tρt,µ = −∇ · (ρt,µ∇st,µ) , for all t ∈ [0, 1] , µ ∈ D, (1)

with the initial condition ρt=0,µ =: ρ0,µ and gradient vector field ∇st,µ.

In our case the continuity equation (1) depends on the physics parameter µ ∼ ν.
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Higher-order quadrature for estimating the loss

The continuous variational form of (1) reads

E(s) := Eµ∼ν

[∫ 1

0
Ex∼ρt,µ

[
1
2
|∇st,µ|2 + ∂tst,µ

]
− Ex∼ρt,µ

[
st,µ

] ∣∣∣∣t=1

t=0

]
. (2)

We discretize this using a combination of Monte-Carlo and higher-order quadrature:

Ê(s) := Ênµ
µ∼ν

[ nt∑
n=1

wn Ênx
x∼ρtn,µ

[
1
2
|∇stn,µ|2 + ∂tstn,µ

]
− Ênx

x∼ρt,µ

[
st,µ

] ∣∣∣∣t=1

t=0

]
(3)

where wn are numerical quadrature weights and tn are the corresponding nodes.

After training, new samples can be generated by integrating

d
dt

Xt,µ = ∇st,µ(Xt,µ), X0,µ ∼ ρ0,µ. (4)

We show that the numerical quadrature in HOAM is critical for accurately estimating the

training objective from sample data and for stabilizing the training process.
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Rapid predictions (inference) with learned reduced models
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In HOAM, time t in the SDE used for generating samples is the same time as of the physics

problem, thus the costs of inference scales with the trajectory length.

HOAM stabilizes training with higher-order quadrature

0.0 0.5 1.0
time

−200

0

200

q(
s)

(t
)

Gau
ss

Sim
p

tra
p

AM
10−8

10−5

10−2

101

re
l.

er
r.

in
∫ 1 0

q(
s)

(t
)d

t

0 10000
Adam Iteration

0

−4

−8

Lo
ss

AM
HOAM

Left: To evaluate (3), q(s)(t) = Ênx
x∼ρt

[1
2|∇st|2 + ∂tst

]
is numerically integrated.

Center: Numerical quadrature gives accurate estimates of the time integral.

Right: Numerical quadrature in HOAM leads to stable estimates of the loss.

Challenging loss estimation

The loss (2) only defines s up to an additive constant that can change in time. If t 7→ s(t)
minimizes (2), then so does t 7→ s(t) + f (t) for any f : [0, 1] 7→ R:

E(s + f ) − E(s) =
∫ 1

0
∂tf (t) dt − f (1) + f (0) = 0. (5)

Discretely, the difference depends on the quadrature error:

Ê(s + f ) − Ê(s) =
∑

n

wn ∂tf (tn) − f (1) + f (0) 6= 0. (6)

During optimization, f and ∂tf can grow to the point where the training becomes unstable as

soon as the quadrature error term is too large.

HOAM compared to time-conditioned flow-based models
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Top: Bump-on-tail (t = 20) instability. Middle top: two-stream (t = 20) instability. Middle

bottom: Strong Landau damping (t = 4). Bottom: Nine-dimensional chaos.

HOAM accurately predicts quantities of interest
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HOAM accurately predicts the energy growth in the transient regime and oscillations at later

times. The competing flow-based methods are less accurate.

Speedups in inference step (predictions)
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HOAM provides about 2 orders of

magnitude speedup over the 6D

full-order particle-in-cell model.

Other surrogate models provide no

speedup.

Github: https://github.com/julesberman/HOAM NeurIPS 2024, Vancouver jmb1174@nyu.edu, tmb9910@nyu.edu

https://github.com
mailto:jmb1174@nyu.edu
mailto:tmb9910@nyu.edu

