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Idea: Use pretrained 
generative models
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Caveat 2: Need to approximate  

Diffusion Posterior
DPS:

ⲠGDM:
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Motivation

Score Function 
Evaluation

Jacobian-Vector 
Product

Solving Inverse Problems with pretrained models is very slow!

Noisy Likelihood Score
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Project to another space

Well Conditioned space
(Better sampling efficiency!)
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Project to another space

Project back when done
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Original Space:

Projected Space:

                denotes the Orthogonal Projector operator 
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Conditional Conjugate Integrators - Results (4x SR)

4x improvement  in Speed-vs-Quality Tradeoffs over vanilla ⲠGDM



Conditional Conjugate Integrators - Results (Noisy 4xSR)

Extends to Non-linear inverse 
problems as well

Degraded Input Conjugate-ⲠGDM 
(5 steps)

Reference



TLDR


