

Variational Multi-scale Representation for Estimating Uncertainty in 3D Gaussian Splatting

Ruiqi Li, Yiu-ming Cheung Department of Computer Science, Hong Kong Baptist University {csrqli, ymc}@comp.hkbu.edu.hk

Background

- Uncertainty information in 3D representation is useful
 - Remove the noisy components in the model
 - Provide confidence maps to assess the quality of synthesized views and depth
 - Important in autonomous driving simulation and robotics navigation
- Naïve 3DGS cannot provide uncertainty information
 - Uncertainty of model parameters
 - Uncertainty of predictions

Motivation

- In Bayesian learning
 - Computational efficiency
 - Exploration of model parameter space samples
- Multi-scale variational representation
 - Learn variational distribution of 3DGS attributes
 - Build local models of multiple scales to increase model parameter space diversity

Method: Multi-scale Variational Representation

Offsetting the 3DGS attributes

$$\mathbf{p}^* = \mathbf{p} + \chi_{\mathbf{p}}; \qquad S^* = S + \chi_S,$$

• Variational inference with multi-scale priors $q(\chi_S) \sim U(-S_{base} + (1 - 1/K)S_{base}, 0); \quad q(\chi_p) \sim \mathcal{N}(0, \delta^2),$

• Inference with learned posterior $p(\mathbf{c} \mid x, \mathcal{D}) = \underset{\chi \sim p(\chi \mid \mathcal{D})}{\mathbb{E}} [p(\mathbf{c} \mid x, \chi)] = \int p(\mathbf{c} \mid x, \chi) p(\chi \mid \mathcal{D}) \mathrm{d}\chi,$

Method: Pipeline

Method: Pipeline

Rendered View

Uncertainty Map

Algorithm: Pipeline

Algorithm 1 The pseudo-code of the training process of our uncertainty-aware 3DGS.

Input: Images and corresponding camera poses **Parameter**: Maximum training step T; Spawn interval t; Threshold τ **Output**: Trained scene representation with parameter θ ; offset table ϕ

- 1: while step < T do
- 2: **if** step % t == 0 **then**
- 3: Select $\mathcal{G}_{base} = \{\mathcal{G}_n | \sum_{\alpha} ||\nabla \theta|| > \tau_{\theta}, ||S_n|| > \tau_S, \alpha > \tau_{\alpha}\}$
- 4: Spawn \mathcal{G}_{base} , create offset table $\phi = \{\phi_S, \phi_{\mathbf{p}}, \phi_{\alpha}\}$
- 5: Assign prior $p(\chi)$ for offsets
- 6: **end if**
- 7: Sample offset χ , render image c and compute image loss $\mathcal{L}_1, \mathcal{L}_{SSIM}$
- 8: Compute KL divergence $\mathcal{L}_{KL} = d_{KL}(p(\chi|\mathcal{D})||q(\chi))$
- 9: Optimize θ , ϕ with total loss $\mathcal{L} = \mathcal{L}_1 + \mathcal{L}_{SSIM} + \mathcal{L}_{KL}$
- 10: end while

Experiments: Depth Uncertainty

Table 1: The depth uncertainty estimation performance on the LF dataset, quantified by the AUSE with MAE error.

LF Dataset	africa	basket	statue	torch	Average
CF-NeRF	0.35	0.31	0.46	0.97	0.52
S-NeRF	0.66	0.38	0.67	0.74	0.61
Bayes' Ray	0.27	0.28	0.17	0.22	0.23
Ensemble GS $(\times 10)$	0.16	0.22	0.17	0.26	0.20
Ours	0.19	0.13	0.21	0.23	0.19

Experiments: Novel View Quality and Uncertainty

Table 2: The performance of novel view rendering and uncertainty estimation on rendered images within the LF and LLFF dataset.

		Synthe	sized View	Uncertainty Quality		
	Method	PSNR ↑	SSIM \uparrow	LPIPS \downarrow	AUSE ↓	$\mathbf{NLL}\downarrow$
LF Dataset	CF-NeRF	24.32	0.835	0.202	0.49	-0.37
	S-NeRF	20.21	0.761	0.248	0.62	1.32
	Ensemble GS $(\times 10)$	27.64	0.902	0.088	0.29	-0.34
	Ours	27.39	0.914	0.101	0.26	-0.30
LLFF Dataset	CF-NeRF	21.74	0.782	0.190	0.48	0.58
	S-NeRF	20.10	0.744	0.221	0.59	0.91
	Ensemble GS $(\times 10)$	24.54	0.810	0.157	0.30	0.26
	Ours	23.97	0.806	0.172	0.32	0.23

Experiment: Noisy Gaussian Removal

All Gaussians

50% Gaussians

30% Gaussians

Zoom in Details

Thank you for listening!

Code: Github Repo

Inquiries to Ruiqi Li: WeChat QR Code or Mailto: csrqli@comp.hkbu.edu.hk