

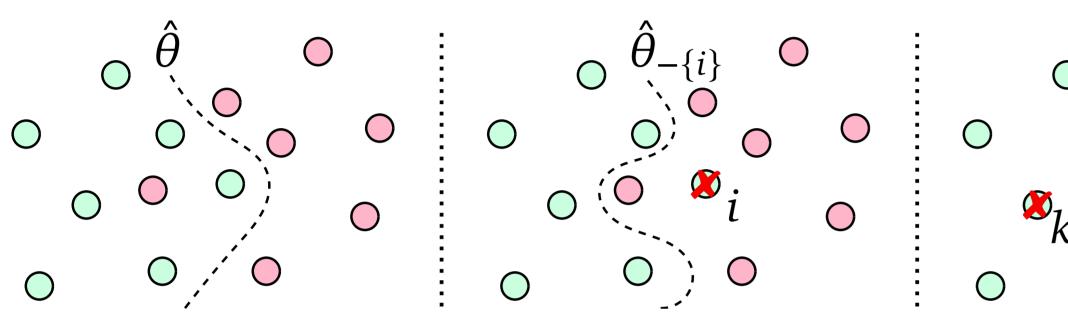
Most Influential Subset Selection: Challenges, Promises, and Beyond

Problem Formulation: Most Influential Subset Selection (MISS)

Given a train set $\{(x_i, y_i) \in X \times \mathcal{Y}\}_{i \in [n]}$ and a loss $L(\cdot, \cdot)$, a prediction task aims to learn a predictor $f(\theta, \cdot) : \mathcal{X} \to \mathcal{Y}$ by ERM:

$$\hat{\theta} = \arg\min\frac{1}{n}\sum_{i=1}^{n} L(f(\theta, x_i), y_i).$$

For $S \subseteq [n]$, $\hat{\theta}_{-S}$:= opt sol. after excluding S from the train set.



Definition. The actual effect of S is defined as $A_{-S} = \phi(\hat{\theta}_{-S}) - \hat{\theta}_{-S}$ $\phi(\hat{\theta})$ w.r.t. a target function $\phi \colon \mathbb{R}^q \to \mathbb{R}$ (e.g., prediction).

Problem. The *k*-MISS problem: $S_{\text{opt},k} = \arg \max_{S \subseteq [n], |S| \le k} A_{-S}$.

Practical Relevance. MISS is a powerful diagnostic tool in social sciences (e.g., testing inferential robustness).

Dominant Approach: Influence - Based Greedy Heuristics

Procedure:

(1) Assign v_i per sample \Rightarrow (2) Sort v_i 's \Rightarrow (3) Select top-k

Ex. Compute v_i 's using influence function

$$\mathcal{I}_{-S} = \frac{1}{n} \nabla_{\theta} \phi(\hat{\theta})^{\top} H_{\hat{\theta}}^{-1} \sum_{i \in S} \nabla_{\theta} L(f(\hat{\theta}, x_i), y_i) =:$$

gives rise to ZAMinfluence [1].

Overview and Contributions

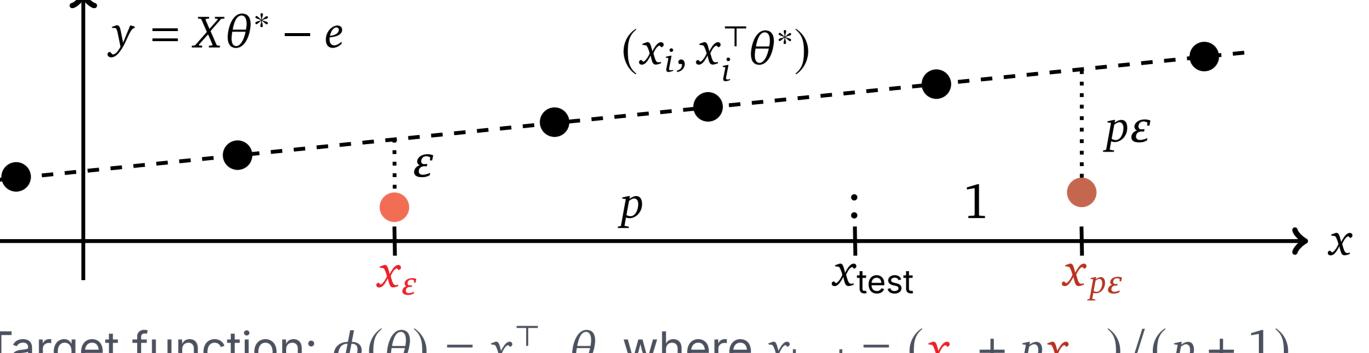
- 1. Analyze failure modes of influence-based greedy heuristics.
- 2. Prove theoretical guarantees of adaptive greedy, and
- 3. Demonstrating its empirical benefits.

Yuzheng Hu Pingbang Hu Han Zhao Jiaqi W. Ma University of Illinois Urbana - Champaign

 \bigcirc i \bigcirc

Formal Analysis in Linear Regression

Consider a design matrix $X \in \mathbb{R}^{n \times d}$ and target vector $y \in \mathbb{R}^d$:



Target function: $\phi(\theta) = x_{\text{test}}^{\top} \theta$, where $x_{\text{test}} = (x_{\epsilon} + px_{p\epsilon})/(p+1)$.

Greedy and its **Pitfalls**

• Pitfall 1: Influence estimate is not accurate

Actual Effect: Influence Estimate: $A_{-\{i\}} = x_{\text{test}}^{\top} \frac{N^{-1} x_i r_i}{1 - h_{ii}}$ $\mathcal{I}_{-\{i\}} = x_{\text{test}}^\top N^{-1} x_i r_i$ • $h_{ii} = H_{ii} > 0$, known as leverage score of x_i .

• Pitfall 2: Sample influence is not additive Note: here we directly use the ground truth individual influence $A_{-\{i\}}$ instead of $\mathcal{I}_{-\{i\}}$ to perform greedy.

Theorem (Amplification). If there are c copies of x_{ε} and $x_{p\varepsilon}$, then there is some p s.t. greedy w.r.t. $A_{-\{i\}}$ fails in c-MISS.

Intuition: a group of samples with small individual effects, collectively can have larger effects. A special case:

$$\frac{A_{-\{i\}^c}}{A_{-\{i\}}} = \frac{c(1-h_{ii})}{1-ch_{ii}} > c \quad (-$$

Theorem (Cancellation). There is some p s.t. x_{ε} and $x_{p\varepsilon}$ are the top 2 influential data (individually), but $A_{-\{x_{\varepsilon}, x_{p\varepsilon}\}} < A_{-\{x_{p\varepsilon}\}}$.

Intuition: effect of S < effect of $S' \subsetneq S$, i.e., removing $S \setminus S'$ induces a negative effect. This can happen for even k = 2.

• $r_i = x_i^\top \hat{\theta} - y_i$ • $N = X^{\top}X$ • $H = XN^{-1}X^{\top}$

 $\rightarrow \infty$ as $h_{ii} \rightarrow 1/c$).

Adaptive Greedy and its Promises

A natural extension: perform greedy adaptively [2]:

(1) Compute v_i 's on current dataset (3) Select (and remove) top -1(2) Sort v_i 's \Rightarrow

Experiments

Adaptive v.s. vanilla greedy on real data and non-linear models:

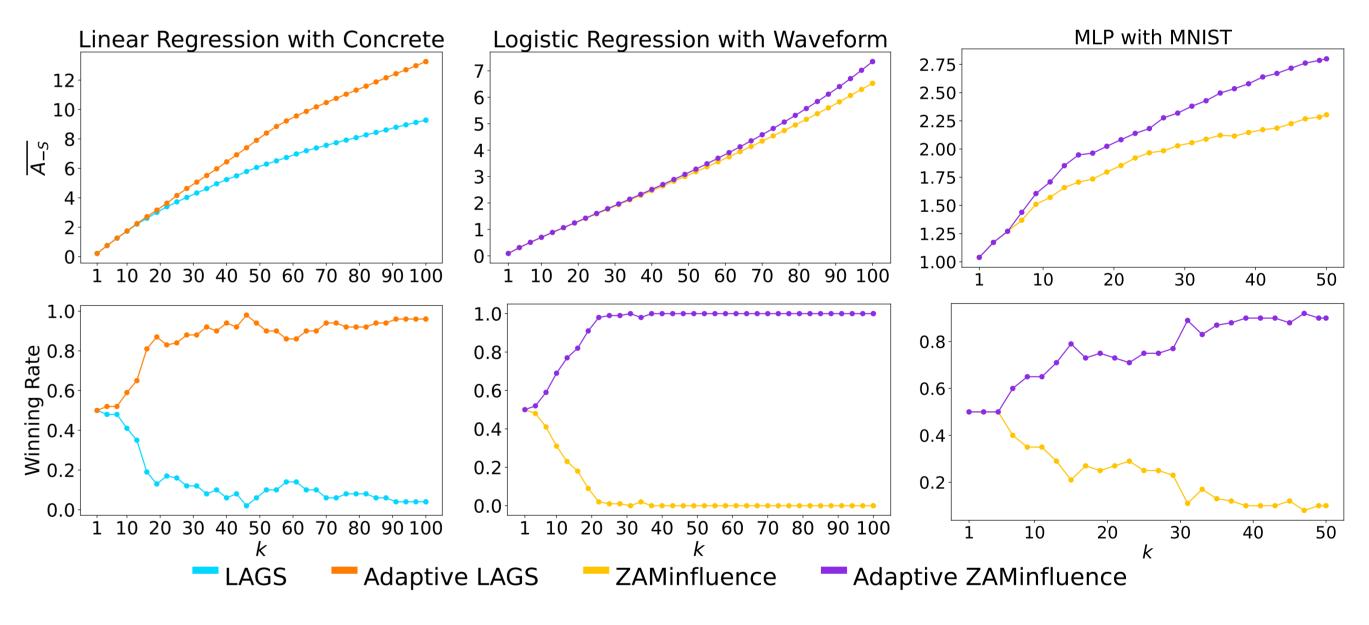


Figure 1. Row 1: $\overline{A_{-S}}$ measures the averaged actual effect. Row 2: Winning rate indicates the proportion of instances where one outperforms the other.

Further Discussions

- 1. Adaptive greedy is not a gold solution
- 2. Target function matters

- Tech. rep. CESifo, 2021.

Theorem (Adaptivity & Cancellation). Suppose cancellation and $x_{p\epsilon} \in S_{opt,2}$. Then, the adaptive greedy solves 2-MISS.

Takeaway: Adaptivity captures more complex interactions between samples, while vanilla greedy only measures the contribution of each sample *solely* in relation to the full training set.

3. Implications on linear datamodeling score (LDS) [3]

[1] Broderick, Giordano, and Meager. An automatic finite-sample robustness metric: when can dropping a little data make a big difference? arXiv preprint arXiv:2011.14999 (2020). [2] Kuschnig, Zens, and Cuaresma. Hidden in Plain Sight: Influential Sets in Linear Models.

[3] Park et al. TRAK: Attributing Model Behavior at Scale. ICML. 2023.