Watermarking Makes Language Models Radioactive

December 2024 - NeurIPS (Spotlight) 🔆

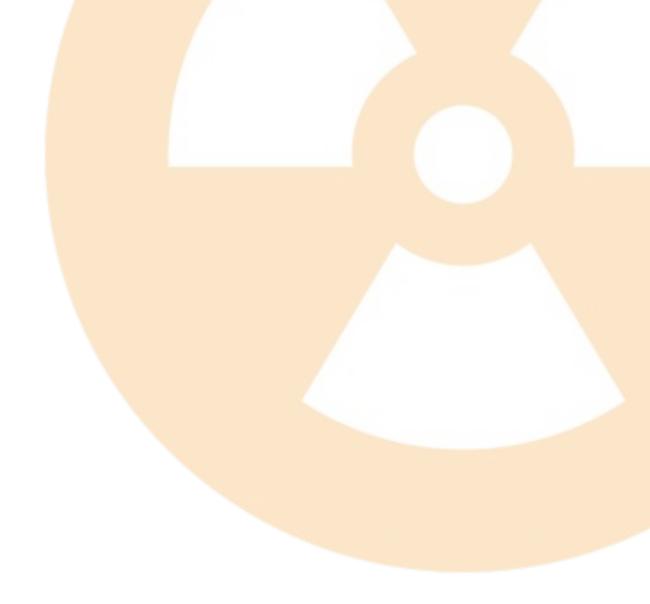
Tom Sander^{1,2}, Pierre Fernandez^{1,3} Matthijs Douze¹, Alain Durmus², Teddy Furon³

(equal contributors) (advisors)

¹ Meta, FAIR

² Ecole polytechnique

³ Inria Rennes

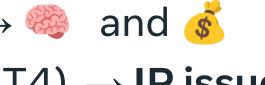


🔿 Meta

Motivation

LLM post-training

- \circ Requires a lot of high quality annotations and tricks $\rightarrow \bigotimes$ and \checkmark
- Practitioners train on data output by a model (e.g., GPT4) \rightarrow IP issues

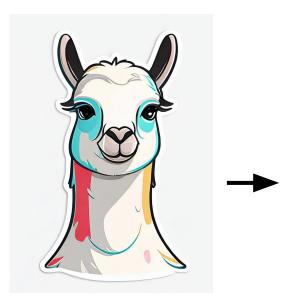


Detection Problem

"Did Bob train on outputs from Alice's model?" is a very difficult question

Could Watermarking Give the Answer?

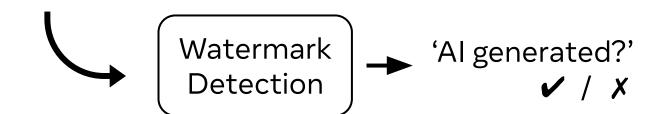
- Watermarking LLMs outputs ≈ free lunch
 - Keeps quality of the generated text
 - Greatly improves detection



MetaGen

Al-generated text

Text watermarking is a technique used to embed a hidden message or pattern into a text document in a way that is not easily detectable by the human eye. The hidden message or pattern is called a watermark, and it can be used to track its distribution.



Could Watermarking Give the Answer?

- Watermarking LLMs outputs ≈ free lunch
 - Keeps quality of the generated text
 - Greatly improves detection



MetaGen

Al-generated text

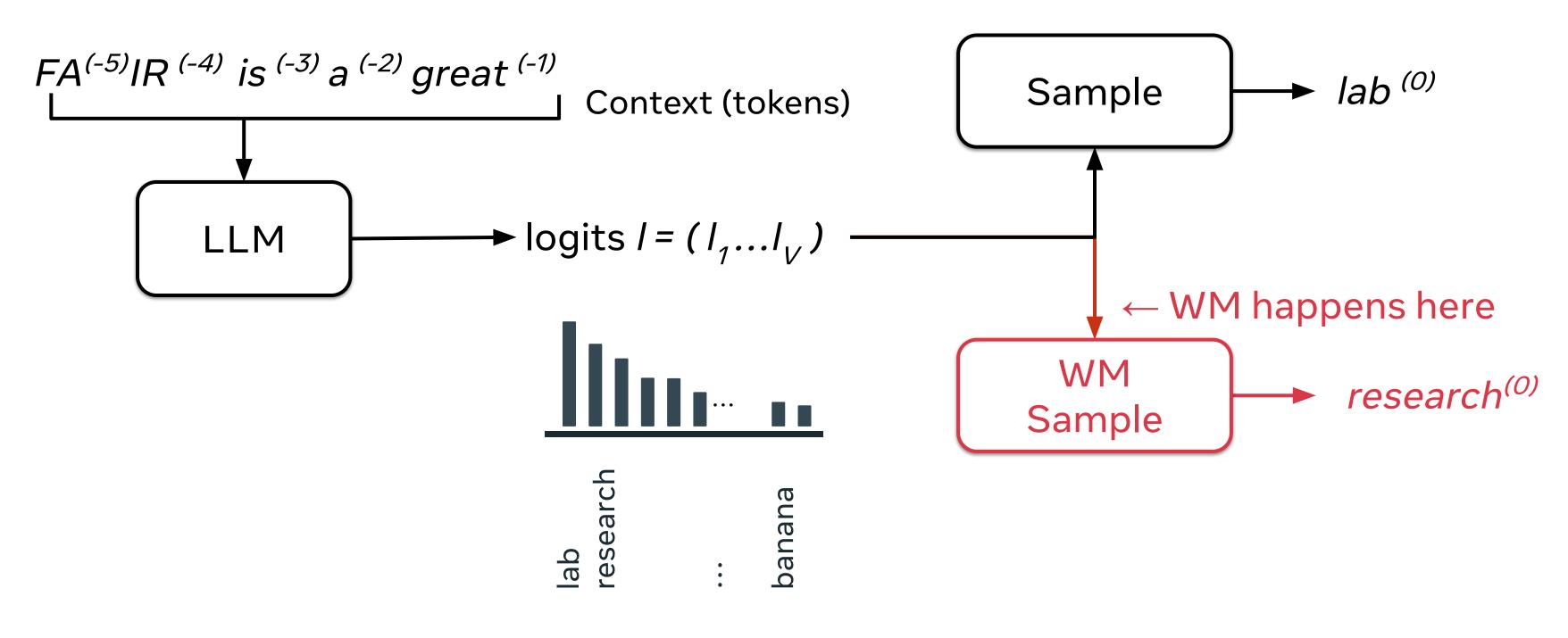
Text watermarking is a technique used to embed a hidden message or pattern into a text document in a way that is not easily detectable by the human eye. The hidden message or pattern is called a watermark, and it can be used to track its distribution.

 \rightarrow "What occurs when we fine-tune an LLM on watermarked data?"

LLM Watermarking 101

Watermarking for LLMs

Generation with LLMs

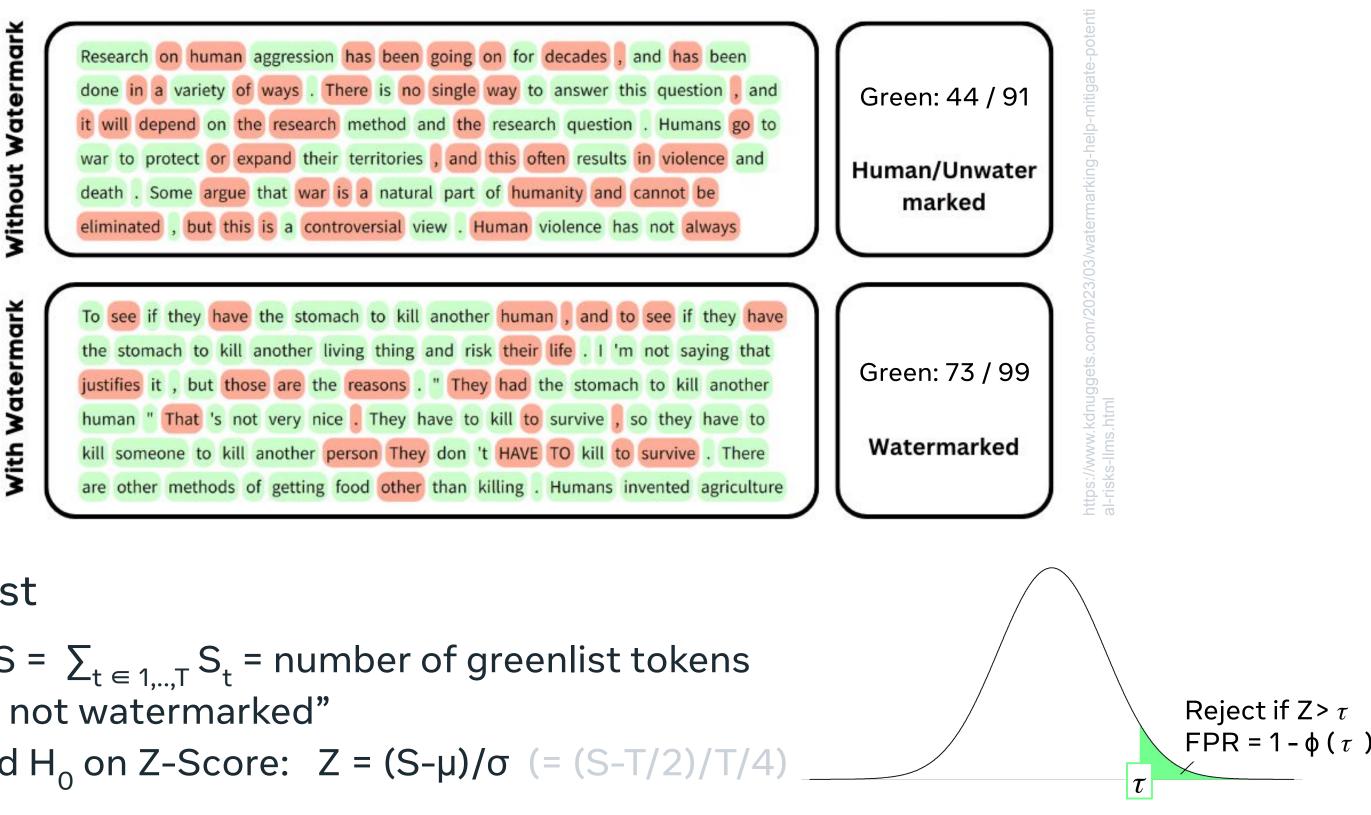


First Example - Kirchenbauer et al.

Kirchenbauer et al., A Watermark for Large Language Models, ICML 2023

Prompt			
The watermark detection algorithm can be made public, enabling third parties (e.g., social media platforms) to run it themselves, or it can be kept private and run behind an API. We seek a watermark with the following properties:	Num tokens	Z-score	p-value
No watermark			
Extremely efficient on average term lengths and word frequencies on synthetic, microamount text (as little as 25 words) Very small and low-resource key/hash (e.g., 140 bits per key is sufficient for 99.99999999% of the Synthetic Internet	56	.31	.38
<pre>With watermark - minimal marginal probability for a detection attempt Good speech frequency and energy rate reduction messages indiscernible to humans easy for humans to verify.</pre>	36	7.4	6e-14

Count Greenlist/Redlist Tokens



Statistical test

- Total score S = $\sum_{t \in 1...,T} S_t$ = number of greenlist tokens
- H_0 = "text is not watermarked"
- Reject based H₀ on Z-Score: $Z = (S-\mu)/\sigma$ (= (S-T/2)/T/4)

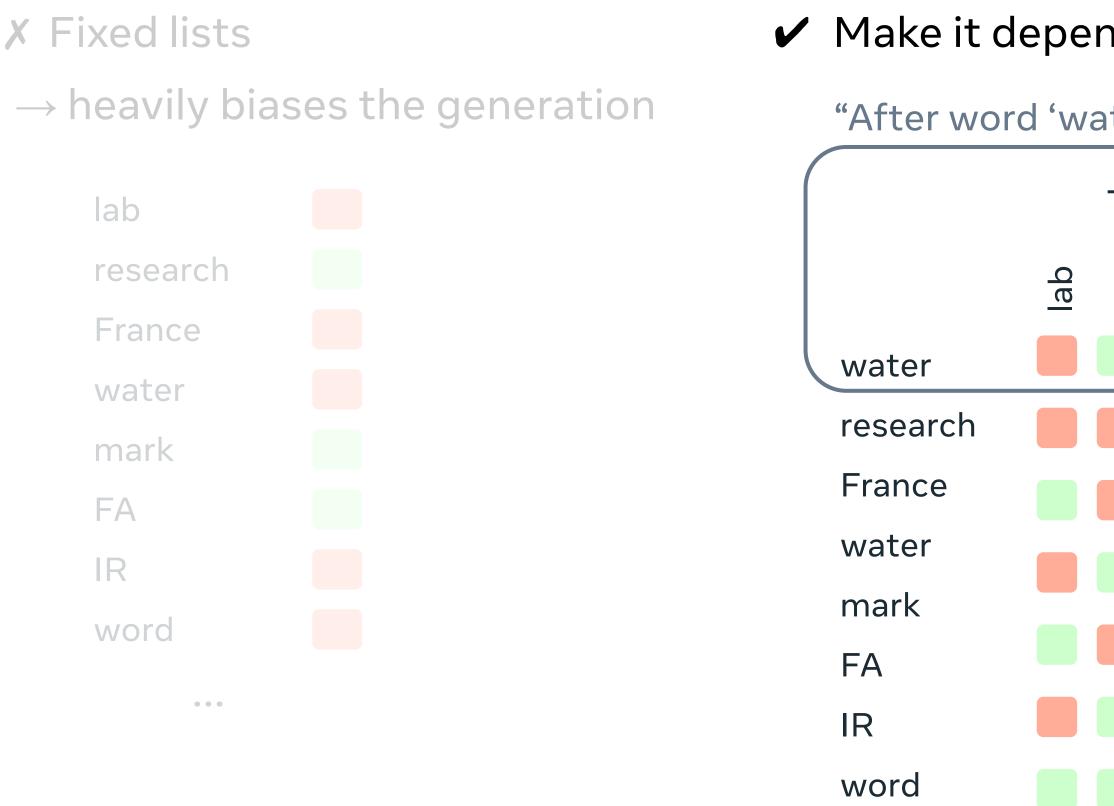
How to Choose Greenlist/Redlist?

- **X** Fixed lists
- \rightarrow heavily biases the generation

 \Leftrightarrow "Generate a text on France"

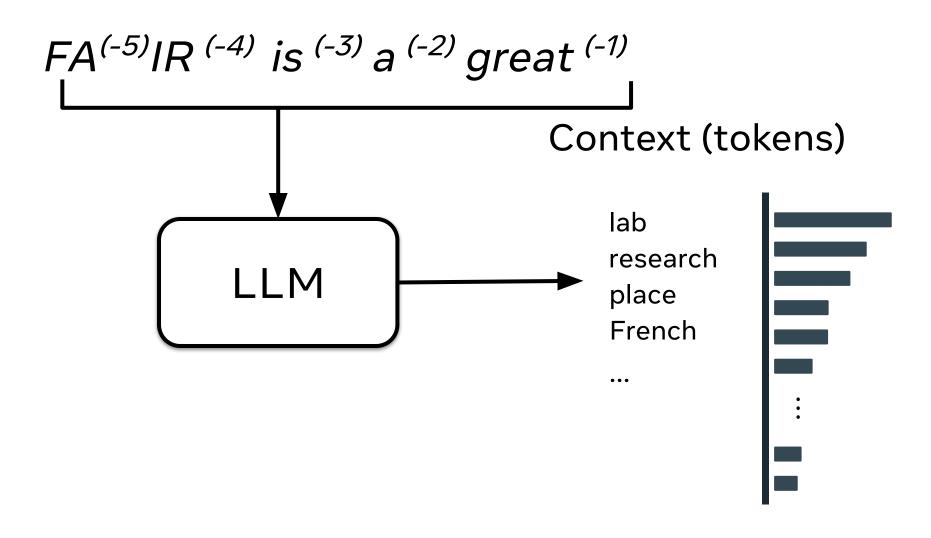
without using the word France"

How to Choose Greenlist/Redlist?

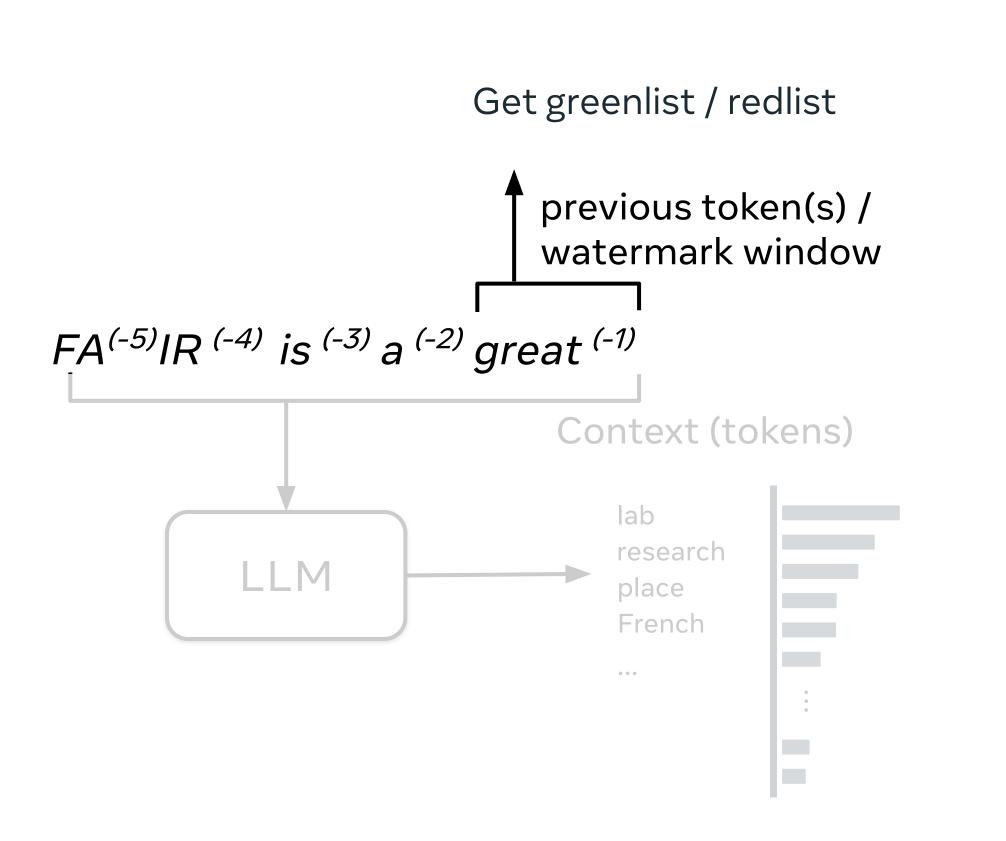


Make it dependant on previous tokens

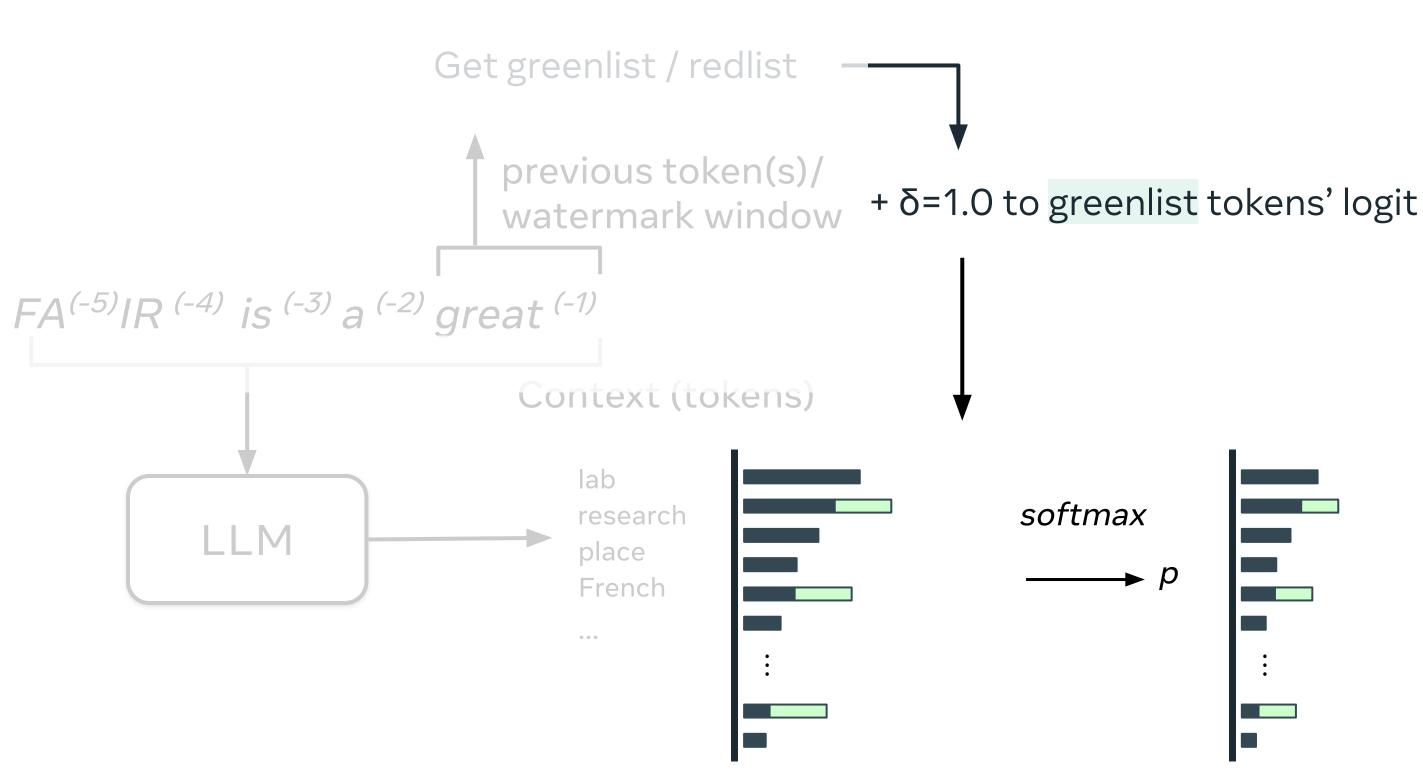
"After word 'water', greenlist/redlist are ..." esearch France water mark word • БĀ \mathbf{C} •

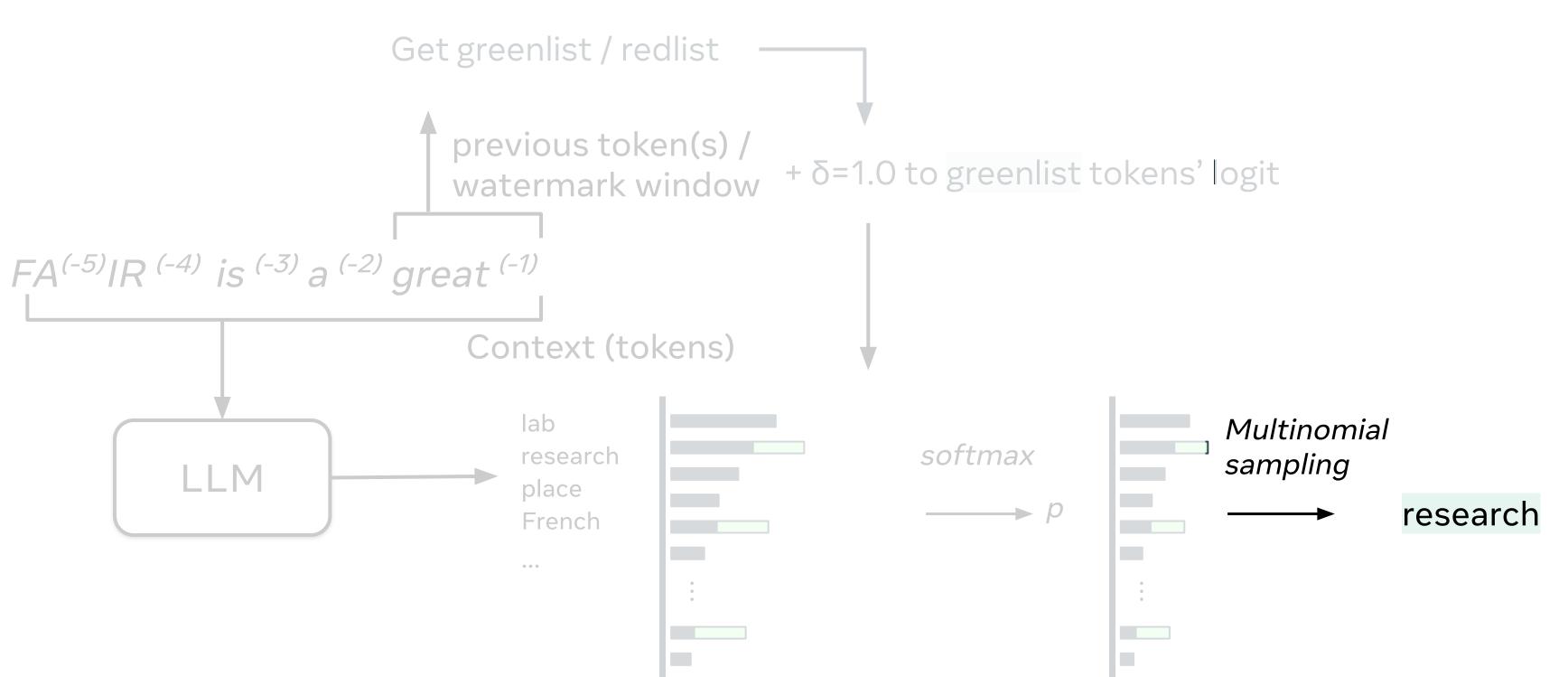


12



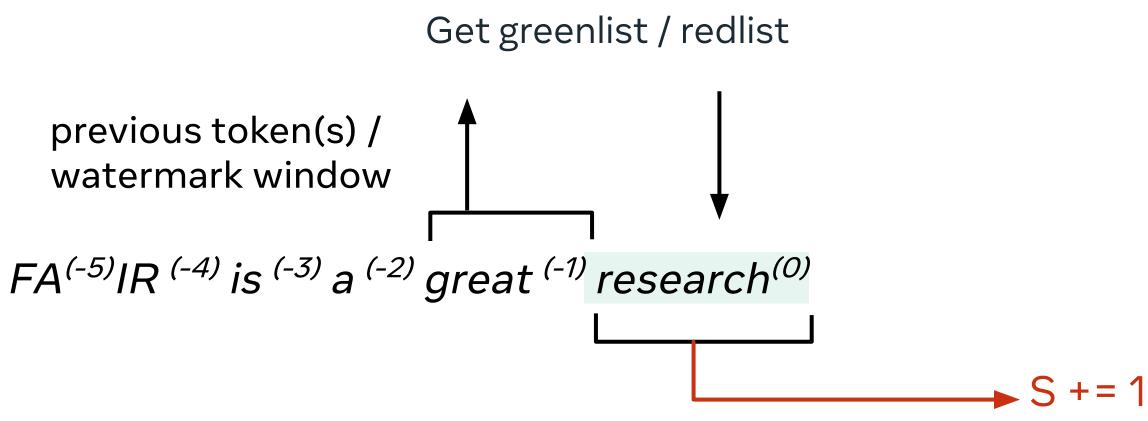
13





Detection with Greenlist/Redlist

Compute score



Statistical test

- Total score S = $\sum_{t \in 1...,T} S_t$ = number of greenlist tokens
- H_0 = "text is not watermarked"
- Reject based H_0 on Z-Score: Z = (S- μ)/ σ or Binomial test

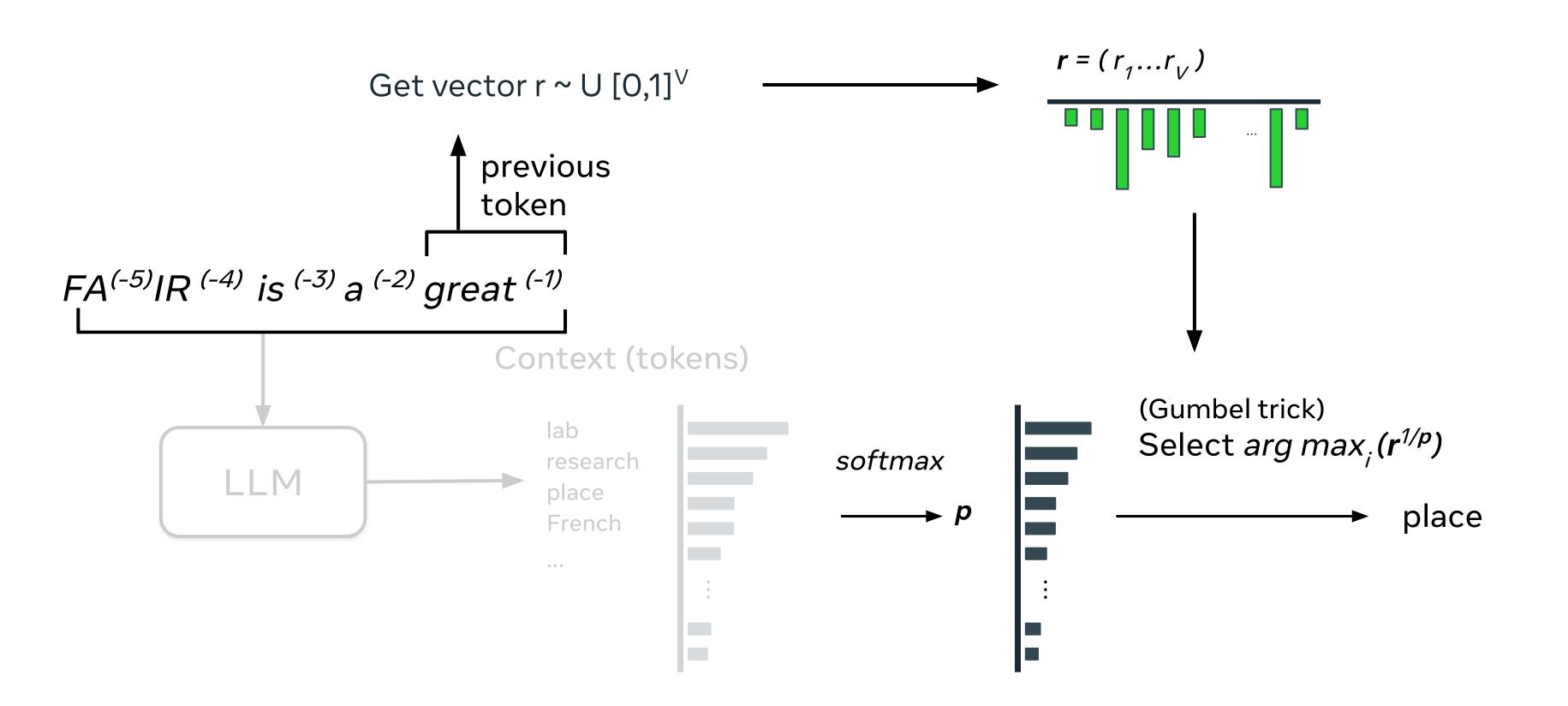
Second Example - Aaronson et al.

Aaronson et al., *Watermarking GPT Outputs*, 2022

Watermarking GPT Outputs

Scott Aaronson (UT Austin and OpenAI) Joint work with Hendrik Kirchner (OpenAI)

Sampling with Gumbel Trick



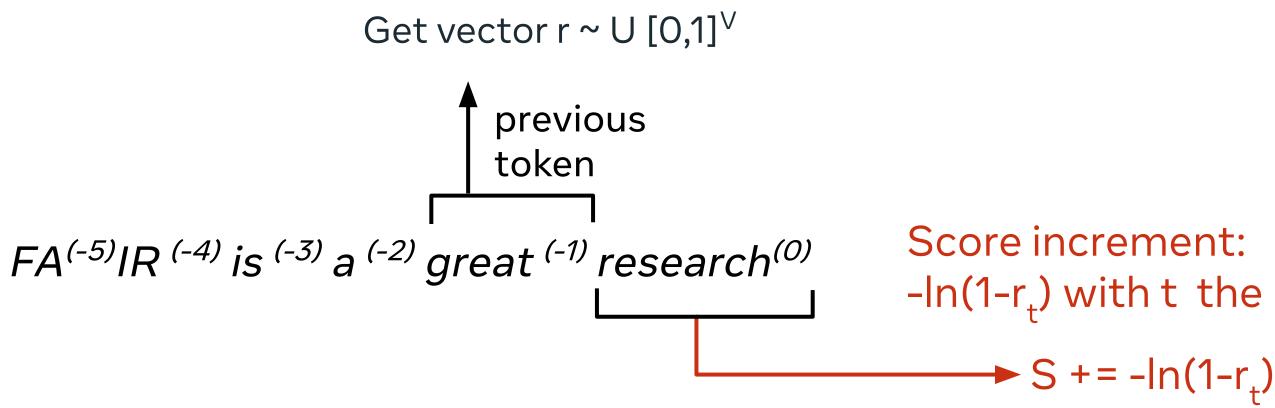
Sampling with Gumbel Trick

Property (Gumbel trick):

 \rightarrow "Proba of choosing token *i* is p_i "

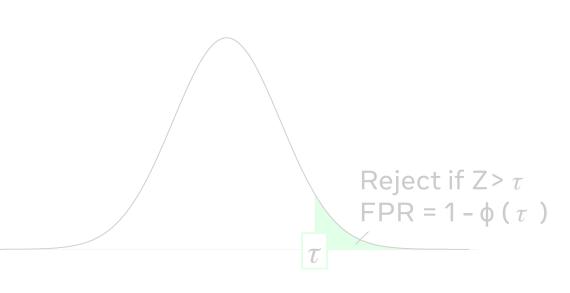
Detection with Z-score

Compute score



Statistical test

- Total score S = $\sum_{t \in 1...,T} S_t$
- H_0 = "text is genuine" H_1 = "text is watermarked"
- Reject based H_0 on Z-Score: Z = (S- μ)/ σ



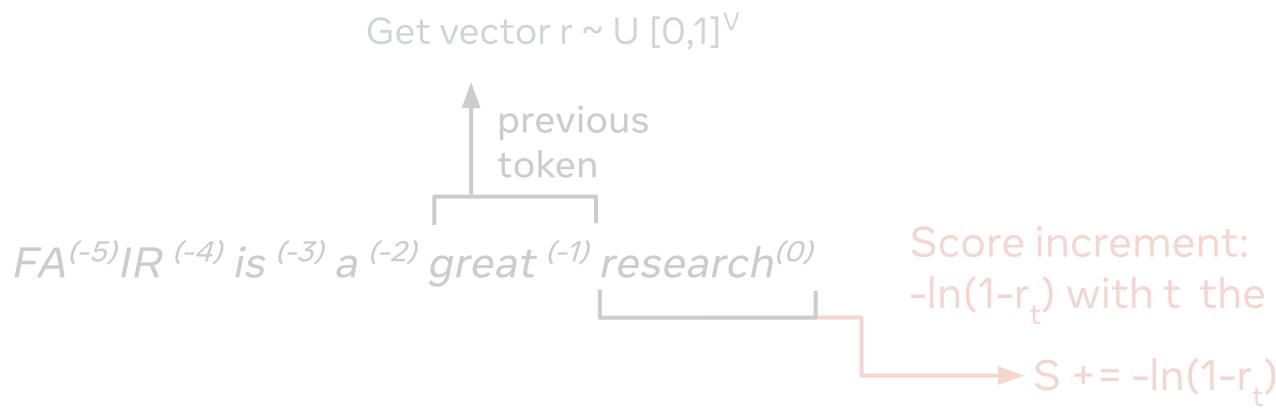
- -ln(1-r₊) with t the index of chosen token

Detection with Z-score



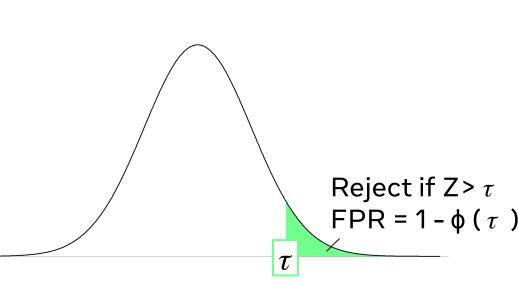
Detection with Z-score

Compute score



Statistical test

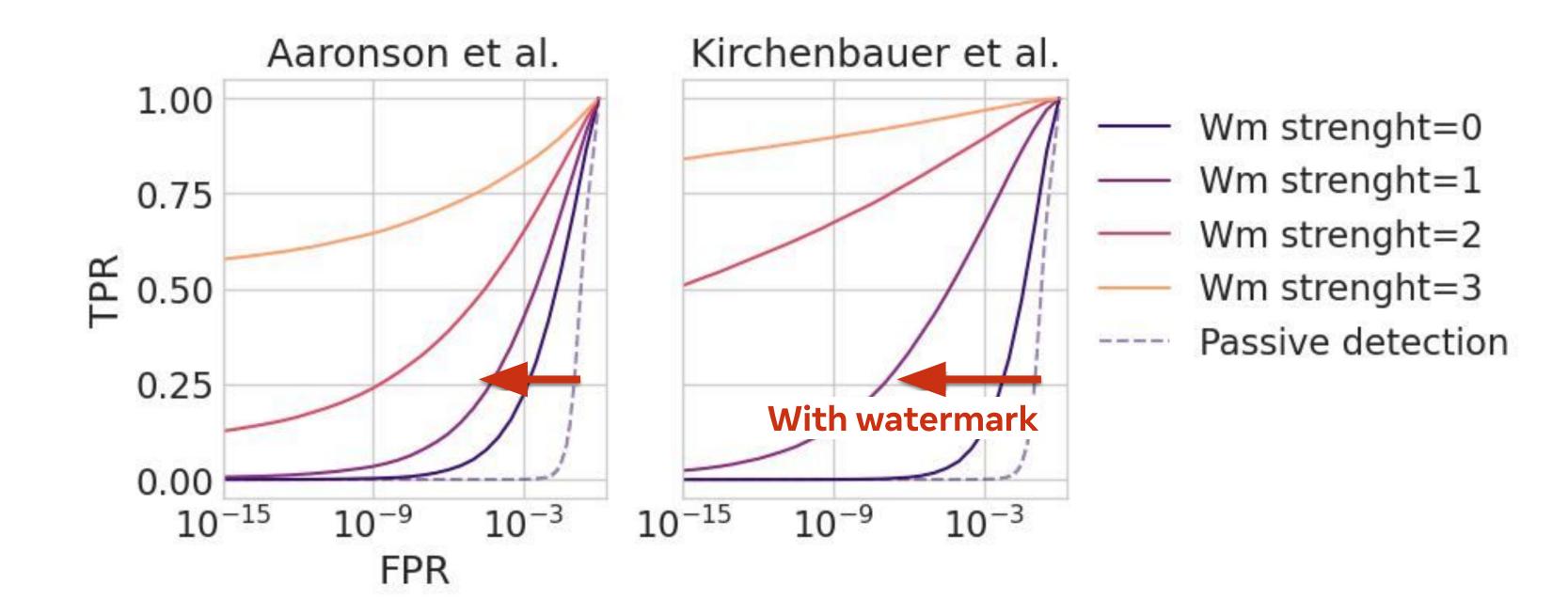
- Total score S = $\sum_{t \in 1,..,T} S_t$
- $H_0 =$ "text is genuine" $H_1 =$ "text is watermarked"
- Reject based H_0 on Z-Score: Z = (S- μ)/ σ



-ln(1-r_t) with t the index of chosen token

Example - Detection Results

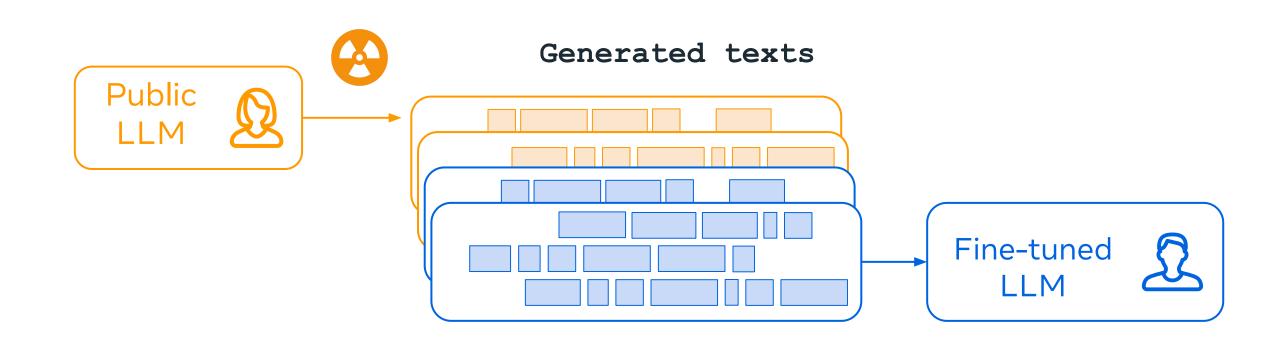
10k positive Al-generated texts (from OpenAssistant Conversations dataset) Passive detection ↔ DetectGPT [] Mitchell, Eric, Yoonho Lee, Alexander Khazatsky, Christopher D. Manning, and Chelsea Finn. "Detectgpt: Zero-shot machine-generated text detection using probability curvature.", ICML 2023]



Radioactivity

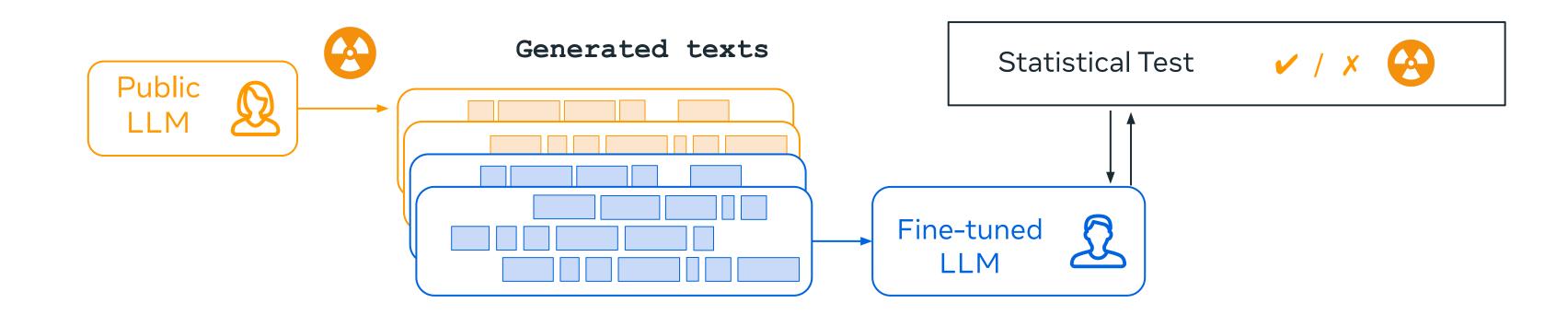
Problem under Study

Bob **fine-tunes** his LLM on **training data** with a small proportion of texts coming from Alice's LLM.



Problem under Study

- Bob **fine-tunes** his LLM on **training data** with a small proportion of texts coming from Alice's LLM.
- Alice wants to know if Bob has fine-tuned on outputs from her model



Radioactivity

Definition: Radioactivity refers to the possibility for Alice to detect with statistical evidence that Bob fine-tuned on outputs from her model

More rigorously,

Definition 1 (Text Radioactivity). Dataset D is α -radioactive for a statistical test T if "B was not" trained on $D'' \subset \mathcal{H}_0$ and T is able to reject \mathcal{H}_0 at a significance level (p-value) smaller than α . **Definition 2** (Model Radioactivity). Model A is α -radioactive for a statistical test T if "B was not" trained on outputs of $\mathcal{A}'' \subset \mathcal{H}_0$ and T is able to reject \mathcal{H}_0 at a significance level smaller than α .

Different Settings

Model is open (Mistral, Llama, Gemma

	- /- ·
Access to the text used by Bob	Open / Supervised
(GPT, Claude, etc.)	
Text used by Bob is unknown	Open/Unsupervis
(Llama, API but obfuscation of user)	

Radioactivity detection availability from other methods in the literature

	With	n WM	Without	WM (MIA)	IPP		
	Open	Closed	Open Closed		Open	Closed	
Supervised	1	1	1	X	\checkmark	\sim	
Unsupervised	1	1	X	×	X	×	

Model access

a, etc.)	API access only (GPT, Claude, etc.)
d	Closed / Supervised

Closed/Unsupervised sed

Naive Approach for Radioactivity Detection with Watermarking

Prompt the model, get many output tokens, get the score and the p-value of the WM detection

	Solv	a story e this ma is water	th prob	lem.			Ther Here Wate
	Fee	d multiple	prompt	S	Bob's l	LM	Scor
	Hash 🗂]	(up to
	Create nlist/ <mark>Redlis</mark>	Waterma	rking h	ides i	nformati	on in	text]
					Scol	re: +1	

e once was [...] is the answer [...] rmarking hides [...]

re all answers

Answers $\approx 1M \text{ toks}$)

Problems with the Naive Approach

Watermark signal is <u>weak</u>

 \rightarrow hard to get p-values < 10⁻¹ for low proportions of watermarked data in the training set

p-values break down when too many tokens are scored

 \rightarrow when scoring two many tokens, the detection test gives very low p-values even for LLMs trained without watermarked text, so the statistical tests are inaccurate

Problems with the Naive Approach

Watermark signal is <u>weak</u>

 \rightarrow hard to get p-values < 10⁻¹ for low proportions of watermarked data in the training set

p-values break down when too many tokens are scored

 \rightarrow when scoring two many tokens, the detection test gives very low p-values even for LLMs trained without watermarked text, so the statistical tests are inaccurate

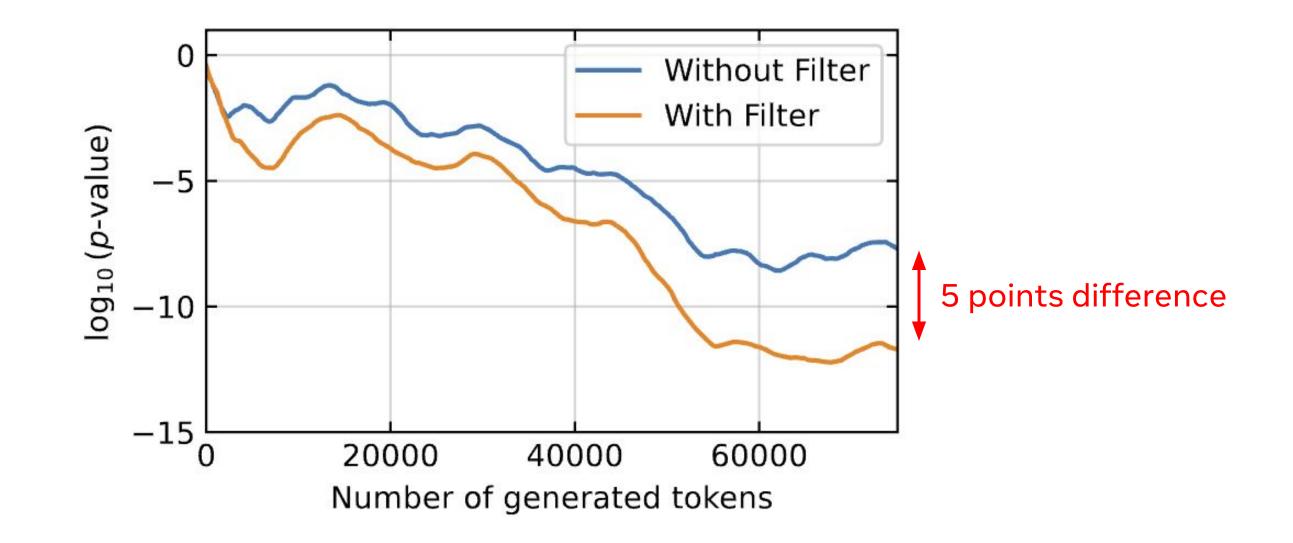
Improvements

- Leverage access to the data
- Leverage access to the model •
- While keeping accurate p-values through deduplication

Trick 1: Filter

Radioactivity can only be detected on watermark windows present in training

- Supervised setting: only score watermark windows suspected to be part of training
- **Unsupervised setting**: see what are the watermark windows that are most often produced by the watermark, and only score these



ows present in training ected to be part of training ws that are most often

Trick 2: Choose the Good Input

Radioactivity can only be detected on k-grams that were present in training

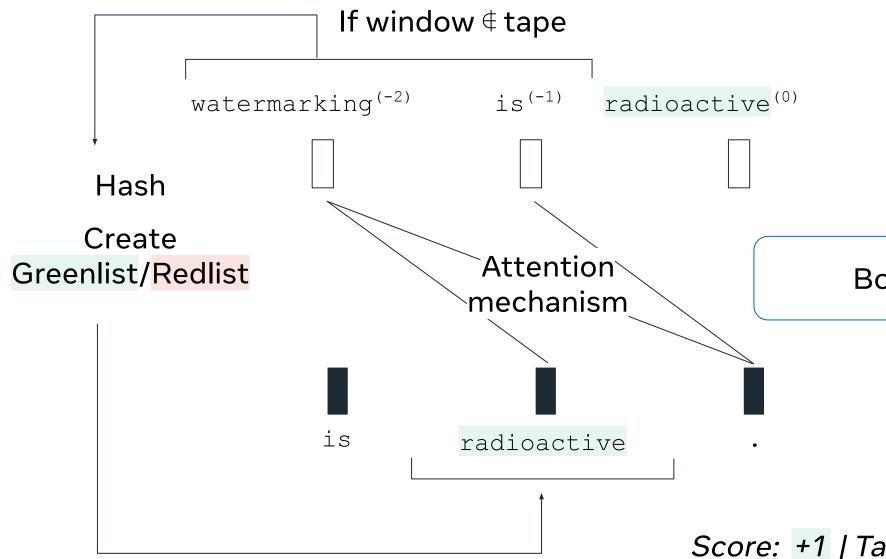
- **Closed-model**: Alice prompts Bob's model with questions that she thinks were used
- **Open-model**: Alice "reads" the data that she thinks Bob has used

re present in training that she thinks were used as used

Trick 3: Open Model

When access to the model is given, Alice can forward text directly to the model

- **Gain in efficiency**: one pass forward only 0
- Gain in supervision: the model sees exact reproduction of watermark window & context Ο



Watermarked text from Alice's model

Bob's LLM

Output tokens by B after forward pass

Score: +1 | Tape: add window

Trick 4: Deduplication for False Positives

• Very important to get reliable p-values

	De-duplication						
Access to Model	With	With					
Open Closed	$\begin{array}{c} 0.46{\scriptstyle\pm0.27}\\ 0.42{\scriptstyle\pm0.30}\end{array}$	0.053 ± 10^{-1}					

• Lots of rules:

- Don't score tokens whose watermark window have already been scored
- Don't score tokens whose watermark window is already in the attention span

n

out

 ± 0.12 -30

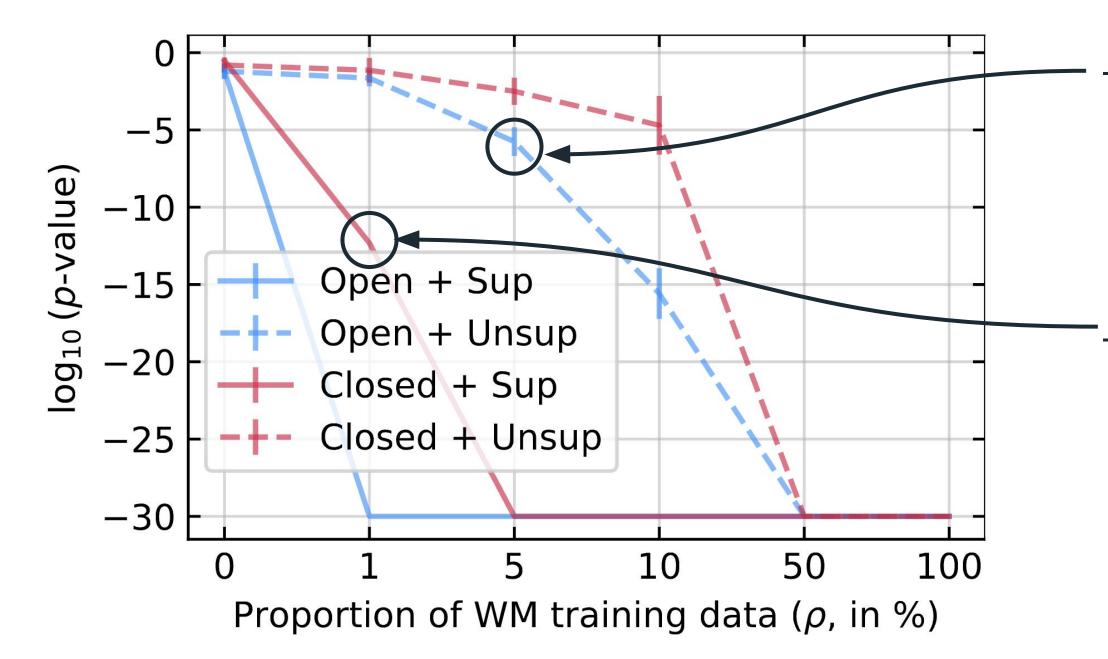
y been scored the attention span

Experimental Setup

- 1. Generate watermarked instructions with Llama-2-chat-7b and Self-Instruct
- 2. Fine-tune Llama-1-7b with varying proportions of watermarked instructions
- 3. Get p-values of radioactivity detection

at-7b and Self-Instruct termarked instructions

Detection Results under the Different Settings



- if the suspect model is
 open-weight, detection has p-value
 < 10⁻⁵ even when as little as 5% of
 training text is watermarked
- when Alice only has API access but knows which data have been used, detection has p-value < 10⁻¹⁰ even when 1% of the training text is watermarked

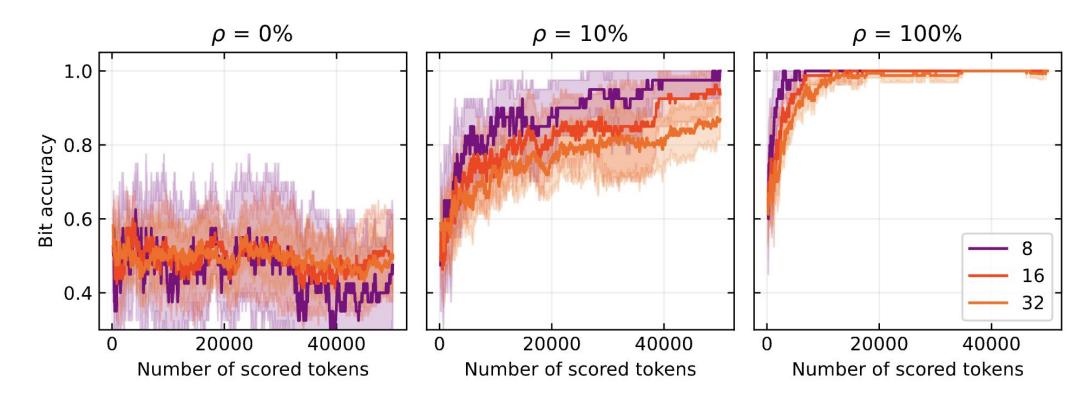
Ablations

Post-training optimization has a big influence on radioactivity

log₁₀ p-value for 10k observed tokens under the supervised-open model se

(a) Learning rate.				(b) Epoch.			(c) Adapters.			(d) Model size.		
10^{-5}	$5\cdot 10^{-5}$	10^{-4}		1	2	3	4	Full	Q-LoRA		7B	13B
-32.4	-49.6	-58.0	-	-20.8	-29.2	-33.2	-34.8	-32.4	-11.0		-32.4	-33.2

The method generalizes to multi-bit watermarking



Ablations

A lot more in the paper!

39

Main Takeaways

Watermarking makes LLM radioactive:

- Training on watermarked data can be **detected with very high confidence**...
- ... even for **small proportions** of WM data

Thanks!