
A Surprisingly Simple Approach to Generalized Few-Shot Semantic Segmentation

Tomoya Sakai Haoxiang Qiu Takayuki Katsuki Daiki Kimura Takayuki Osogami Tadanobu Inoue

IBM Research

Setting | GFSS (Generalized Few-Shot Semantic Segmentation)

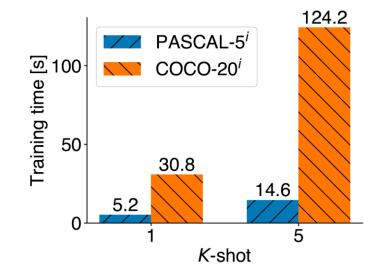
Assume **base-class model** is available

Goal: recognize novel objects with a few annotated images

Existing vs Our Approach

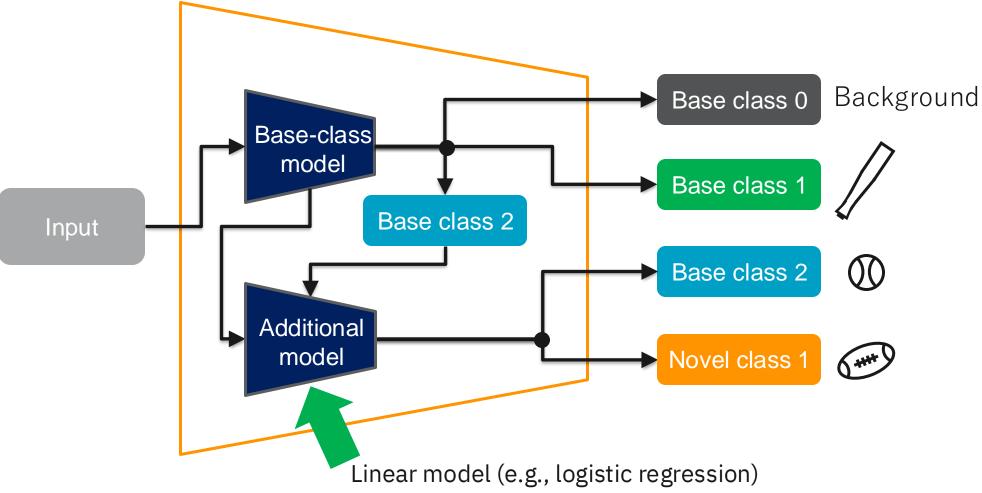
Existing approach

- Rely on several techniques:
 - Meta-learning
 - Information maximization principle
 - Knowledge distillation
 - Transductive learning


Our approach

- Simple rule + standard supervised learning
- Advantages
 - Efficient training
 - Theory: Perfectly maintain segmentation performance for most of the base classes

Proposition 4.1. Let \hat{Y}_{b} and \hat{Y}_{BCM} be the predictions of the base-class model and BCM, respectively. The mIoUs of \hat{Y}_{b} and \hat{Y}_{BCM} over $\mathcal{Y}_{b} \setminus \mathcal{B}$ are the same:


$$\mathrm{mIoU}_{\mathcal{Y}_{\mathrm{b}} \setminus \mathcal{B}}(\boldsymbol{Y}, \widehat{\boldsymbol{Y}}_{\mathrm{b}}) = \mathrm{mIoU}_{\mathcal{Y}_{\mathrm{b}} \setminus \mathcal{B}}(\boldsymbol{Y}, \widehat{\boldsymbol{Y}}_{\mathrm{BCM}}).$$
(4)

If $|\mathcal{B}|$ is small, the segmentation performance of most of the base classes is perfectly maintained.

Overview of Proposed Method

Run additional prediction if predicted base-class is "similar" to novel class

Experiments

Setting PASCAL-5ⁱ dataset 15 base classes, 5 novel clases

Results (mIoU: higher is better)

	1-shot				5-shot		
Method		Base	Novel	Mean	Base	Novel	Mean
CAPL	(CVPR'22)	64.80	17.46	41.13	65.43	24.43	44.93
BAM	(CVPR'22)	71.60	27.49	49.55	71.60	28.96	50.28
DIaM	(CVPR'23)	70.89	35.11	53.00	70.85	55.31	63.08
BCM	(Ours)	71.15	41.24	56.20	71.23	55.36	63.29

+6.1%

Proposed method achieved superior performance without resorting to metalearning, information maximization principle, and transductive learning