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Setting | GFSS (Generalized Few-Shot Semantic Segmentation)

▪ Assume base-class model is available

▪ Goal: recognize novel objects with a few annotated images
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Existing vs Our Approach

▪ Existing approach 
- Rely on several techniques:

- Meta-learning
- Information maximization principle
- Knowledge distillation
- Transductive learning

Our approach
- Simple rule + standard supervised learning
- Advantages

- Efficient training
- Theory: Perfectly maintain segmentation performance for most of the base classes
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Overview of Proposed Method

▪ Run additional prediction if predicted base-class is “similar” to novel 
class
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Experiments

▪ Setting
– PASCAL-5𝑖 dataset

▪ 15 base classes, 5 novel clases

▪ Results（mIoU: higher is better)

– Proposed method achieved superior performance without resorting to meta-
learning, information maximization principle, and transductive learning

1-shot 5-shot

Method Base Novel Mean Base Novel Mean

CAPL (CVPR’22) 64.80 17.46 41.13 65.43 24.43 44.93

BAM (CVPR’22) 71.60 27.49 49.55 71.60 28.96 50.28

DIaM (CVPR’23) 70.89 35.11 53.00 70.85 55.31 63.08

BCM (Ours) 71.15 41.24 56.20 71.23 55.36 63.29

+6.1%
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