

Linear Transformers are Versatile In-Context Learners

Max Vladymyrov mxv@google.com Johannes von Oswald Mark Sandler jvoswald@google.com sandler@google.com

Rong Ge rongge@cs.duke.edu

Key Findings

- Each layer of a linear transformer acts like a step in a complex optimization algorithm, similar to gradient descent.
- Linear transformers can learn to solve challenging problems, like linear regression with varying levels of noise.
- They discover effective optimization strategies that outperform standard methods.
- These strategies include adjusting step sizes based on noise levels and rescaling the solution.

Model: Linear Transformer

• Linear Transformer updates each layer using

$$\left(\begin{array}{c} x_j^{l+1} \\ y_j^{l+1} \end{array}\right) := \sum_{k=1}^h \left[P_k^l \sum_{j=1}^n \left(\left(\begin{array}{c} x_j^l \\ y_j^l \end{array}\right) ((x_j^l)^\top, y_j^l) \right) Q_k^l \right]$$

- Each token $e_i=(x_i,y_i)\in\mathbb{R}^{d+1}$ consists of a feature vector $x_i\in\mathbb{R}^d$, and its corresponding output $y_i\in\mathbb{R}$.
- We append a query token $e_{n+1}=(x_t,0)$ to the sequence, where x_t represents test data.
- ullet The goal of in-context learning is to predict y_t for the test data x_t .

Problem: Noisy regression

For each input sequence au the input is given by:

- A ground-truth weight vector $w_{ au} \sim N(0,I)$.
- n input data points $x_i \sim N(0, I)$.
- Noise $\xi_i \sim N(0, \sigma_\tau^2)$ sampled with variance $\sigma_\tau \sim p(\sigma_\tau)$.
- Labels $y_i = \langle w_\tau, x_i \rangle + \xi_i$.

For a known noise level $\sigma_{ au}$, the best estimator for $w_{ au}$ is provided by ridge regression:

$$L_{RR}(w) = \sum_{i=1}^{n} (y_i - \langle w, x_i \rangle)^2 + \sigma_{\tau}^2 ||w||^2,$$

We also consider problems where the noise variance $\sigma_{ au}$ is sampled from a given distribution $p(\sigma_{ au}).$

$$L(\theta) = \underset{\substack{w_{\tau} \sim N(0,I) \\ x_{i} \sim N(0,I) \\ \xi_{i} \sim N(0,\sigma_{\tau}^{2})}}{\mathbb{E}} \left[(\hat{y}_{\theta}(\{e_{1},...,e_{n}\},e_{n+1}) - y_{t})^{2} \right],$$

Main Result: Linear transformers maintain linear regression model at every layer.

Linear transformers are restricted to maintaining a linear regression model based on the input:

Theorem 4.1. Suppose the output of a linear transformer at l-th layer is $(x_1^l, y_1^l), (x_2^l, y_2^l), ..., (x_n^l, y_n^l), (x_t^l, y_t^l)$, then there exists matrices M^l , vectors u^l, w^l and scalars a^l such that

$$egin{align} x_i^{l+1} &= M^l x_i + y_i u^l, & x_t^{l+1} &= M^l x_t, \ y_i^{l+1} &= a^l y_i - \langle w^l, x_i
angle, & y_t^{l+1} &= -\langle w^l, x_t
angle, \end{align}$$

Conclusions

- Linear transformers, even though they are simple, can be a surprisingly versatile in-context learners.
- They can discover effective optimization strategies that outperform standard methods.
- Transformers have the potential to automatically discover new and effective algorithms for various machine learning tasks.

Diagonal attention matrices

We also analysed even simpler variant of linear transformer with diagonal attention matrices. Since the elements \boldsymbol{x} are permutation invariant, a diagonal parameterization reduces each attention heads to just four parameters:

$$P_k^l = \left(egin{array}{cc} p_{x,k}^l I & 0 \ 0 & p_{y,k}^l \end{array}
ight); \quad Q_k^l = \left(egin{array}{cc} q_{x,k}^l I & 0 \ 0 & q_{y,k}^l \end{array}
ight).$$

Using reparametrization

$$\begin{aligned} w_{xx}^l &= \sum_{k=1}^H p_{x,k}^l q_{x,k}^l, & w_{xy}^l &= \sum_{k=1}^H p_{x,k}^l q_{y,k}^l, \\ w_{yx}^l &= \sum_{k=1}^H p_{y,k}^l q_{x,k}^l, & w_{yy}^l &= \sum_{k=1}^H p_{y,k}^l q_{y,k}^l. \end{aligned}$$

leads to the following diagonal layer updates:

$$\begin{split} x_i^{l+1} &= x_i^l + \boldsymbol{w_{xx}^l} \Sigma^l x_i^l + \boldsymbol{w_{xy}^l} y_i^l \alpha^l \\ y_i^{l+1} &= y_i^l + \boldsymbol{w_{yx}^l} \langle \alpha^l, x_i^l \rangle + \boldsymbol{w_{yy}^l} y_i^l \lambda^l, \end{split}$$

Each term controls a specific aspect of the updates:

- w_{yx}^l : how much x_i^l influences y_i^{l+1} .
- Controls the gradient descent.
- w_{xx}^l : how much x_i^l influences x_i^{l+1} .

 Controls the preconditioner strength.
- w_{xy}^l : how much y_i^l influences x_i^{l+1} .
 - Adapting the step-sizes based on the noise.
- w_{yy}^l : how much y_i^l influences y_i^{l+1} .
 - Adaptive rescaling based on the noise.

Experiments

Linear Transformer-based methods:

- Full. Trains full parameter matrices.
- Diag. Trains diagonal parameter matrices
- GD++. An even more restricted diagonal variant that uses only w_{yx}^l and w_{xx}^l terms.

Baselines:

- Constant Ridge Regression (ConstRR). The noise variance is estimated using a single scalar value for all the sequences.
- Adaptive Ridge Regression (AdaRR). Estimate the noise variance via unbiased estimator: $\sigma_{\rm est}^2 = \frac{1}{n-d} \sum_{j=1}^n (y_j \hat{y}_j)^2 \text{, where } \hat{y}_j$ represents the solution to the ordinary least squares.
- Tuned Adaptive Ridge Regression (TunedRR).
 Same as above, but after the noise is estimated, we tuned two parameters:
 - o a max. threshold for the estimated variance,
 - o a multiplicative adj. to the noise estimator.

