Mitigating Externalities while
Learning

A. Scheid, A. Capitaine, E. Boursier, E. Moulines, M. Jordan, A. Durmus

NeurlPS 2024

Example of externalities:
factories on a river

_/
Upstream
qi factory

Example: factories on a river

Upstream utility: 7;(g,) increases with g,

Downstream utility: 7,(g,, g,) increases with g, and decreases with g,

- externality

Upstream optimal strategy: ¢ = arg max z,(g)
q

Downstream optimal strategy: q; = arg max ﬂz(ql* ,q)
q

Social inefficiency: 7,(q]) + 7y (q[", ¢5°) < max, . 17(q;) + 7(q.9,)}

Recovering social optimum

Idea: allowing proprietary rights to restore social efficiency

d

If | produce ¢, you pay me

max 7,(q,, ¢,) — (g, ;)
q>

—1]
Upstream } Downstrea

— recover soclal optimum max ﬂl(ql) + Jrz(ql, 9'2)
Q19QZ

Issue: the players do not know their utilities!
'What if we learn utility functions over time?|

We can recover social optimum through transfers

For instance:
Ressource sharing

1 Shall I play
b A =a7 }

Model with transfers ;

Upstream Player

& If you play d:
| pay you 7 §

At each time f:

1. Downstream player proposes payment (7,d) € R, X [K] Downstream Player

2. Upstream player: - observes (7(?), d,)
- plays A, € [K]
- receives and observes: Z, (1) +1,_;7

3. Downstream player: - plays B, € | K}

- getsreward X, 5 (1) — 1, _;7

[

- observes separately X, (7)and 1, _;

Downstream Player

l Shall | play

A =a7?

Designing no regret strategies

Upstream player Is a no-regret learner

Downstream policy

Idea: run batched binary searches to find z: the minimal incentive to have A, = a

* Propose payment (a, 7) for 7 successive time steps

. Observe 77 the number of times upstream did not pull a

Using the no-regret assumption, w.h.p.

1
. N T7 > CT* thent* > 7 — I

1
. fT7 < T% — CT*™ then T < T+ 5

10

Downstream policy

i For a good choice of parameters: j'

RUT) = o(T)

— most of the regret is due to waiting for the upstream player learning
— the faster does the upstream player learns, the better for the downstream one

— upstream and downstream players can typically use UCB as a subroutine

11

Conclusion

Summary:
e Study a repeated two player games with an upstream/downstream relation

* We propose a downstream algorithm that works for general upstream policies

Direct extensions:
* |nstance dependent bounds
* Anytime policy

e Extension to linear contextual case

12

Perspectives

Higher level questions:

* More general interactions between multiple learning agents
* Propose black box independent strategies

* Potential long term strategic manipulations

Thank you!

13

