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Original Graph

Graph Coarsening

The objective is to reduce an input graph 4V, A, X) with N-nodes into a
new graph ¢ (V', A', X') with n-nodes.

The Graph Coarsening (GC) problem requires learning of a coarsening
matrix C, which defines the linear mapping fromV — V.

Coarsened Graph

Feature size X’ € R™*¢
Vertices are of order O(n)
Edges are of order 0(n?)
Features are of order O(na)

Feature size X e RVxd
Vertices are of order O(N)
Edges are of order o(n?)
Features are of order o(na)



Toy Example
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e Everynon-zero entry Cu denotes the mapping of the i*" node of % to the j*
super-node ¢

e Avalid € matrix must belong to set S defined as

S = {C e RV*™ ¢y € {01}, |G| = 1, (C;.C;) = 0,¥i # §.(C.C) = ds. ||CT ||o > 1}

. (1)
® |cT|l, > 1 makes sure that no supernode is empty and (C;,C;) = 0 ensures that

each node of ¥ is mapped to a unique supernode.



What has been done on graph coarsening?

e Optimization and Heuristics

Loukas 2018: Two variants, edge-based (LVE) and neighborhood-based (LVN)
Kumar 2023: FGC

Dorfler 2013: Kron reduction

Chen 2011: Algebraic Distance

Livne 2011: Affinity GS

Dhillon 2007: Heavy Edge

e GNN based graph condensation
o Jin2021: GCond
o Zheng 2023: SFGC
e Scaling GNN using coarsening methods

o Huang 2021: SCAL
o (Cai2021: GOREN

O O O O O O



Research gaps

Existing optimization and heuristic based graph coarsening methods are
computationally demanding.

Existing graph condensation methods require full graph training to get a condensed
graph, due to which these methods are not suitable for the scalability of GNN models.

Lack of graph coarsening methods for heterophilic graphs.

How to employ graph coarsening methods for scalibility of graph neural networks.



Research gaps

e Existing graph coarsening methods are computationally demanding.

UGC uses a hashing-based method,
which is super fast.

e Existing graph condensation methods require full graph training to get a

condensed graph' UGC doesn't require full graph
training.

e Lack of graph coarsening methods for heterophilic graé)hs.
UGC uses both feature level and structure
level information to handle heterohily

graphs.
e How to employ graph coarsening methods for scalibility of graph neural
networks. A coarsened graph can be used to

scale GNN based methods.
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Proposed framework: UGC

The UGC framework comprises three main components: (a) construction of an
augmented feature matrix; (b) construction of a coarsening matrix; and (c) construction of
a coarsened graph.
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Augmented feature matrix

In order to create a universal GC framework suitable for both homophilic as well as heterophilic

datasets, it is important to consider features at both i) the node level, i.e., features, and ii) the
structure-level, i.e., adjacency matrix, together.

A heterophily factor 0 < o < 1 may be used to denote the degree of heterophily. o is calculated as
the fraction of edges between nodes of different classes to the total number of edges.

Rl

Node Feature of B
(Xp)

Heterophily factor a = 3/56

(Fa) =3/5%0 1 0 1 1) || 2/5%-0.7 0.5 1.3 -0.9)
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1
8 \ Augmented Feature (F) =a (A) || (1 -a) (X)
g Adjacency Feature of A,




Coarsening matrix

e UGCuses the Locality Sensitive Hashing (LSH) technique to create coarsening matrix. LSH is defined as

Definition: Let d be a distance measure, and let di < ds be two distances. A
family of functions F is said to be (dy.ds,p1.po)—sensitive if for every f € F
the following two conditions hold:

1. If d(x,y) < dy then probability [f(z) = f(y)] = p1
2. If d(x,y) = do then probability [f(z) = f(y)] < p2

e F, € R?represent the augmented feature vector of node v,

o let WeR*land b € R! be the random hashing matrices with / hash functions. The hash indices
generated by the k™ projector for the i node is given as p* — Ll « Wy - Fi + by)|
2 r 2

e The hash value assigned to the i" node is given by h; = maxzOccured{h;, h?....ht}which defines the
linear mapping 7r: V — V' and construction of the coarsening matrix.



Coarsened graph

e Apair of super-nodes, say v; and v;, in _are connected; if any of the nodes u € #7*(v)
has an edge to any of the nodes, say v € #=1(v;)in G, i.e,Juc 7 1(5;),v € 771(3))
such that A, = 0.

e The coarsened graph (%_) is weighted, and the weight assigned to the edge
between nodes v; and 4;is given by, 4y =3 (e wen-1(5) 4w and the adjacency
matrix of G_ is defined asA =cT4c .

e Supernode features are calculatedas F =CTF



Outline

e Background

e Proposed framework UGC

e Quality checks for the coarsened graph
e Experiments

e Conclusion



Quality checks for the coarsened graph

UGC employs different matrices to quantify the quality of the coarsened graph.

e Spectral Similarity
e &-similarity
e LSH similarity

e Using node classification accuracy when trained on the coarsened graph.



Spectral Similarity

e Relative Eigen Error (REE) gives the means to quantify the measure of the eigen
properties of the original graph % that are preserved in the coarsened graph %..

I =

e REE is defined as follows: REE(L,L..k)= 3>, “ where ; and X; are the top k
eigenvalues of the original graph Laplacian L and the coarsened graph Laplacian L.
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e-similarity

e UGC gives a coarsened graph, which satisfies the €-similarity theorem, which is

stated as:
Theorem: The input graph G(L,F) and the coarsened graph G.(L., F )
obtained using the proposed UGC algorithm are e-similar with € > 0, i.e.,

(L= Fllz < ||F|z. < 1+ €)|F|z

where L and L, are the laplacian matrices of G and G, respectively.

e To give a strict bound on the €(< 1) we updated

Epsilon Value

F to F by minimizing the term

ming f(F) = tr(FTCTLCF) + £||CF — F||% A ——

Coarsening ratio

which aim to enforce the Dirichlet smoothness condition in super-node features



LSH similarity

The LSH family used in our framework ensures that the probability of two nodes
going to the same supernode is directly related to the distance between their
features.

Theorem: The probability that two nodes v and u will collide and go to a
super-node under a hash function drawn uniformly at random from a 2-stable
distribution is inversely proportional to ¢ = ||v — ul|o and it is represented by

p(€) = Prus [hus(v) = hus(w)] = 3 15, (£) (1— £) dt.

g

8

Probability of Same Supernode

3 4 S
Pairwise Distance(c)
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Experiments

The conducted experiments establish the performance of UGC concerning

e Computational efficiency,

e Preservation of spectral properties,

e Potential extensions of the coarsened graph ¢_into real-world applications. We
have used node classification tasks on real-world datasets.

e Model agnostic behaviour of UGC.



Run time

UGC's main contribution lies in its computational efficiency. The time required to
compute the coarsening matrix € is summarized in below Table,

Data/Method Cora Cite. CS PubMed DBLP Physics Flickr Reddit Yelp Squirrel Cham. Cor. Texas Film
Var. Neigh. 6.64 8.72 23.43 24.38 22.79 58.0 OOM OOM OOM 33.26 12.2 1.34 0.63 27.67
Var. Edges 534 737 16.72 18.69 20.59 67.16 OOM OOM OOM 46.45 12.65 1.31 0.76 26.6

Var. Cliq. 729 9.8 24.59 61.85 38.31 69.80 OOM OOM OOM 28.91 10.55 1.56 1.14 33.04
Heavy Edge 0.7 1.41 7.50 12.03 8.39 39.77 OOM OOM OOM 18.08 5.41 1.62 1.17 11.79
Alg. Dist 0.93 1.55 9.63 10.48 9.67 46.42 OOM OOM OOM 18.03 5.24 1.58 0.81 12.65
Affinity GS 236 253 169.05 168.3 110.9 924.7 OOM OOM OOM 20.00 5.83 1.81 1.24 20.65
Kron 0.63 1.37 8.72 5.81 7.09 34.53 OOM OOM OOM 20.62 7.25 1.73 097 12.29
UGC 0.41 0.71 3.1 1.62 1.86 6.4 8.9 16.17 170.91 2.14 0.49 0.04 0.03 1.38

e UGC s able to coarsen down massive datasets like Yelp (716.8k nodes), which was

previously not possible.
UGC is the fastest graph coarsening method.



Scaling GNN via graph coarsening

To scale the training process, we used coarsened graph ¢_to train a GNN
model; all the predictions are made on test data from the original graph.

Original Graph G Coarsened Graph G
a1 am
0. : ( 56 )
12 _ \ y,
5 e
( Training neural network on
& =@ Graph Coarsening | the coarsened graph Gc -
@ : > P > GCN for Node Classification
2)

Making prediction on the original graph G using weights learned on the coarsened graph G¢ during training




Node classification accuracy

e UGC demonstrated superior performance compared to existing methods in 7 out of the 9 datasets.

Reported are the accuracy of the GNN models when trained with 50% coarsen graph.

Data/Method Cora DBLP PubMed Physics Squirrel Cham. Cor. Texas Film

Var.Neigh. 79.75  77.05 77.87 93.74 19.67 20.03 52.49 3451 15.67

Var.Edges 81.57 79.93 78.34 93.86 20.22 29.95 55.32  30.59 21.8

Var.Clique 80.92  79.15 73.32 92.94 19.54 31.92 58.8 33.92  20.35

Heavy Edge 79.90 77.46 74.66 93.03 20.36 33.3 54.67  29.18 19.16

Alg. Dis. 79.83  74.51 74.59 93.94 19.96 28.81 59.91 18.61 19.23

Aff. GS 80.20  78.15 80.53 93.06 20.00 27.58 54.06  21.18 20.34

Kron 80.71  77.79 74.89 92.26 18.03 29.1 55.02 31.14 1741

UGC(fea.) 83.92  75.50 85.65 94.70 20.71 29.9 55.6 52.4 22.6

UGC(fea+Ad) 86.30 75.50 84.77 96.12 31.62 48.7 04.7 57.1 25.4

e  Results from four diverse models, namely GCN, 1(\}[811;1/ Data gg 5 g’z};;ned gé o g%grel

GraphSage, GIN, and GAT, have been incorporated to g;;phsage 22:32 22:3 Zé:éllg iiig

7421 84.37 92.60  48.75

demonstrate the robustness and model-agnostic nature of UGC.
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Conclusion

e UGC s the fastest graph coarsening method.
e UGC preserves spectral properties.

UGC satisfy €-similarity and LSH similarity.
UGC scales training of GNN models.

Accuracy and Computational Time Comparison
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