
Project: https://duquant.github.io/

PaperCode

https://duquant.github.io/

2

Network Quantization

Ø Network Quantization
Ø Reduce redundancy in network representation
Ø FP16 --- Low bits storage

Ø What to quantize?
Ø Weights W
Ø Activations X
Ø Gradients

Ø The basic Quantization formulation
Ø 𝑋: Float format
Ø 𝑋!: Int format
Ø ∆: Scaling factor
Ø 𝑧: Zero point

Rounding Function
Nearest Rounding

3

Motivation
ØMassive Outliers vs Normal Outliers

n Normal: large values across specific feature dimensions and present in all token sequences
n Massive: exceedingly high values and occur in a subset of tokens

ØOur Observations
n Massive Outliers Exist at the Second Linear Layer
 (Down Projection) of FFN Module
n We are the first to discover this phenomenon,
 while previous works only focus on layer outputs

Normal Massive

4

Motivation
Ø Our Observations

n Massive Outliers Exist at the Second Linear Layer (Down Proj) of FFN Module
n Traditional Methods fail to eliminate these massive outliers

• SmoothQuant[1]: cause the weights of the down-projection to display noticeable outliers
• OmniQuant[2] and AffineQuant[3]: optimization-based methods to encounter problems with loss explosion

[1]. Xiao, Guangxuan, et al. "Smoothquant: Accurate and efficient post-training quantization for large language models." ICML, 2023.
[2]. Shao, Wenqi, et al. "Omniquant: Omnidirectionally calibrated quantization for large language models." ICLR, 2024.
[3]. Ma, Yuexiao, et al. "Affinequant: Affine transformation quantization for large language models." ICLR, 2024.

5

DuQuant

6

Rotation
Ø Method

n We first use Smooth technique [1] to balance the quantization difficulty
n Use rotation matrix to distribute the outliers to adjacent channels
n Ideal rotation matrix 𝑹

• Orthogonal
• Target the positions of outliers and mitigate them through matrix multiplication

ØRotation with prior knowledge
n Use greedy search with prior knowledge (the feature dimension of outlier) to compute a rotation

matrix

[1]. Xiao, Guangxuan, et al. "Smoothquant: Accurate and efficient post-training quantization for large language models." ICML, 2023.

7

Rotation

ØBlock-wise rotation
n For time and memory efficiency, we use block-wise rotation matrix

ØRotation with prior knowledge
n Use greedy search with prior knowledge (the feature dimension of outlier) to compute a rotation matrix
n The feature dimension 𝑑(") =
n Construct the rotation matrix by:

n : an orthogonal initialized rotation matrix, first row is specifically uniformly distributed
n : switching matrix used to swap the first and the 𝑑(") column of the activation
n can mitigate outliers in the first column after the transformation by
n : further increase the randomness of the rotation operation, is a random orthogonal matrix

Original

n Greedy search for 𝑁 steps (once rotation may induce new outliers) Rotation once

8

Permutation
ØLimitation of Rotation

n Block-wise rotation: uneven outlier magnitudes across different blocks
n Measurement: Compute the variance of different blocks

• For 𝑖	block, the 𝑀!! represents the mean values of all 𝑂", 𝑂" is the largest outlier in dimension 𝑑"

ØSolution
n Channel permutation to balance the distribution of outliers across blocks
n Permutation transformation is also orthogonal, denote as
n After permutation, employ another rotation transformation to further smooth the activations

9

Zigzag Permutation
ØZigzag Order

n Distribute the channels with the highest activations across the blocks in a back-and-forth pattern
n Fast with strong performance

10

DuQuant
ØLinear Layer

n Smooth techniques (SmoothQuant)
n Block-wise Rotation (block size: 128)
n Permutation along with second Rotation

ØVisualization

11

DuQuant
ØTheoretical Analysis

n Within Each block, the constructed rotation matrix effectively mitigates the maximum outlier

n Zigzag permutation ensures a balanced upper bound shared among different blocks

𝐸𝑞𝑛. (3)

12

Experiments
ØDuQuant: Rotation – Permutation – Rotation

n LWC[1]: adjusts weights by training parameters γ, 𝛽 ∈ [0,1] to compute the step size

ØModels: LLaMA1, LLaMA2, LLaMA3, Vicuna, Mistral
ØTasks: Language generation (PPL), Commonsense QA, MMLU, MT-Bench, LongBench

[1]. Shao, Wenqi, et al. "Omniquant: Omnidirectionally calibrated quantization for large language models." ICLR, 2024.

13

Experiments
ØModels: LLaMA1, LLaMA2, LLaMA3, Vicuna, Mistral
ØTasks: Language generation (PPL), Commonsense QA, MMLU, MT-Bench, LongBench

14

Experiments
ØSettings: LLaMA2-7B, Measure on RTX 3090, Input seq --- 2048, Decoding --- 128 steps

n Pre-filling stage --- computational bound, measure the speedup
n Decoding stage --- memory bound, measure the memory usage

End-to-end pre-filling speedup on LLaMA2-7B model.Peak memory usage with a batch size of 1.

Decoding phase results of one LLaMA2-7B layer with a batch size of 64.

Computational overhead analysis.

About 10%
compared to W4A4

15

Experiments
ØComparison with QuaRot [1]

n Better rotation --- utilize prior knowledge
n Permutation transformation --- further smooth activation landscape, better performance
n Jointly smooth weight and activations --- no need for GPTQ, faster

[1]. Ashkboos, Saleh, et al. "Quarot: Outlier-free 4-bit inference in rotated llms." NeurIPS 2024.

PaperCode
Haokun Lin and Yichen Wu are actively seeking postdoctoral opportunities,

while Haobo Xu is exploring potential PhD positions.

Please feel free to reach out to us!

