DuQuant: Distributing Outliers via Dual Transformation Makes Stronger Quantized LLMs

NeurIPS 2024 Oral

Haokun Lin^{*1,3,4}, Haobo Xu^{*2}, Yichen Wu^{*4}, Jingzhi Cui², Yingtao Zhang², Linzhan Mou⁵, Linqi Song⁴, Zhenan Sun^{^1,3}, Ying Wei^{^5}

> ^{*}Equal Contribution [^]Corresponding Authors ¹School of Artificial Intelligence, University of Chinese Academy of Sciences ²Tsinghua University ³NLPR & MAIS, Institute of Automation, Chinese Academy of Sciences ⁴City University of Hong Kong ⁵Zhejiang University

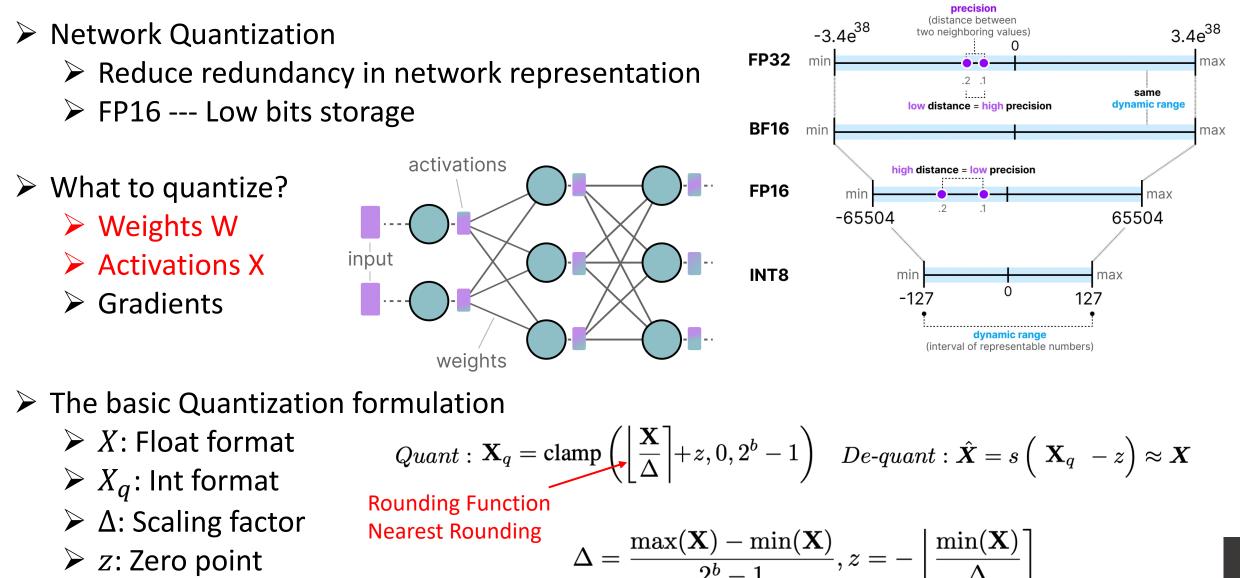
NEURAL INFORMATION PROCESSING SYSTEMS

Code

Project: https://duquant.github.io/

Paper

Network Quantization

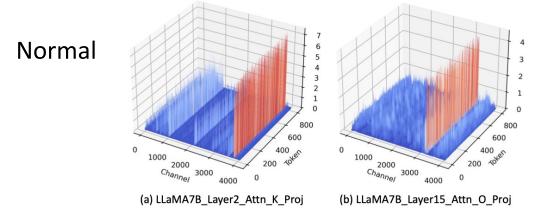


 \succ z: Zero point

Motivation

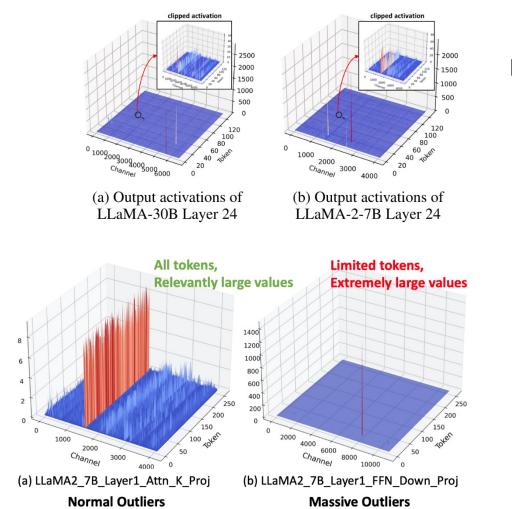
Massive Outliers vs Normal Outliers

- Normal: large values across specific feature dimensions and present in all token sequences
- Massive: exceedingly high values and occur in a subset of tokens



Our Observations

- Massive Outliers Exist at the Second Linear Layer (Down Projection) of FFN Module
- We are the first to discover this phenomenon, while previous works only focus on layer outputs

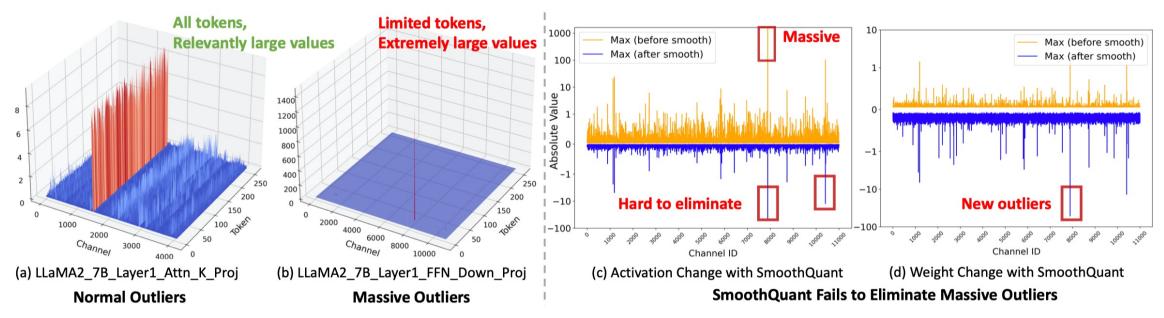


Massive

Motivation

Our Observations

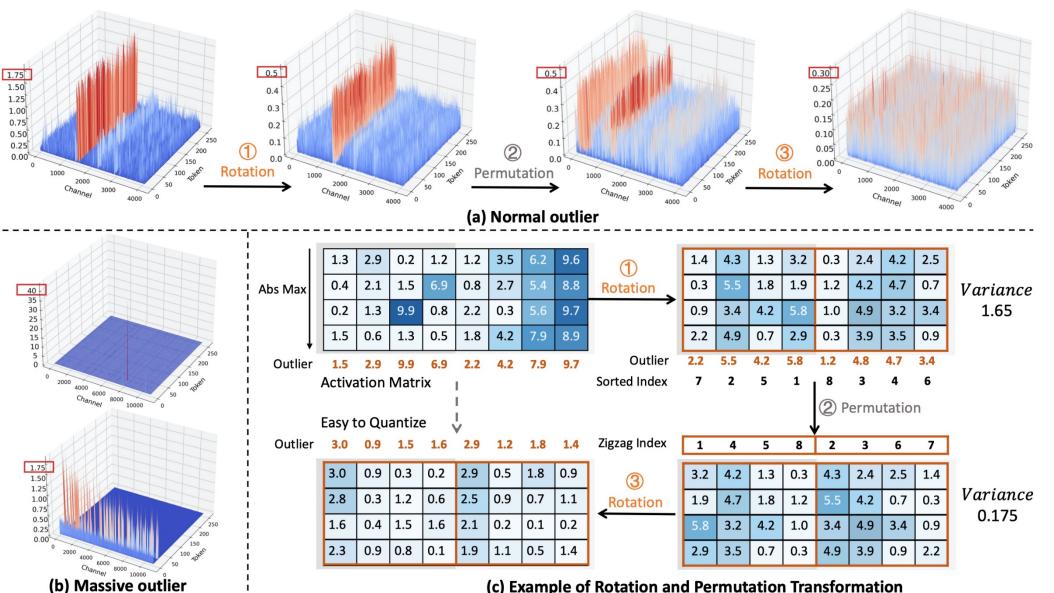
- Massive Outliers Exist at the Second Linear Layer (Down Proj) of FFN Module
- Traditional Methods fail to eliminate these massive outliers
 - SmoothQuant[1]: cause the weights of the down-projection to display noticeable outliers
 - OmniQuant[2] and AffineQuant[3]: optimization-based methods to encounter problems with loss explosion



How to eliminate both Normal and Massive outliers?

- [1]. Xiao, Guangxuan, et al. "Smoothquant: Accurate and efficient post-training quantization for large language models." *ICML*, 2023.
- [2]. Shao, Wenqi, et al. "Omniquant: Omnidirectionally calibrated quantization for large language models." ICLR, 2024.
- [3]. Ma, Yuexiao, et al. "Affinequant: Affine transformation quantization for large language models." ICLR, 2024.

DuQuant

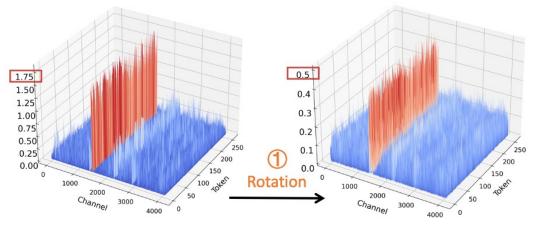


(c) Example of Rotation and Permutation Transformation

Rotation

Method

- We first use Smooth technique [1] to balance the quantization difficulty $\mathbf{Y} = \mathbf{X} \cdot \mathbf{W} = (\mathbf{X} \cdot \mathbf{\Lambda}^{-1})(\mathbf{\Lambda} \cdot \mathbf{W})$
- Use rotation matrix to distribute the outliers to adjacent channels
- Ideal rotation matrix R
 - Orthogonal $\mathbf{R}\mathbf{R}^{\top} = \mathbf{I} |\mathbf{R}| = \pm 1$
 - Target the positions of outliers and mitigate them through matrix multiplication



Rotation with prior knowledge

Use greedy search with prior knowledge (the feature dimension of outlier) to compute a rotation matrix $\hat{\mathbf{R}}$

 $\mathbf{\Lambda}_{j} = \max(|\mathbf{X}_{j}|)^{\alpha} / \max(|\mathbf{W}_{j}|)^{1-\alpha}$

Rotation

Rotation with prior knowledge

- Use greedy search with prior knowledge (the feature dimension of outlier) to compute a rotation matrix $\hat{\mathbf{R}}$
- The feature dimension $d^{(1)} = \arg \max_j (\max_i |\mathbf{X}_{ij}|)$
- Construct the rotation matrix by:

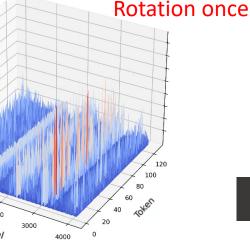
$$\mathbf{R}^{1} = \mathbf{E}_{d^{(1)}} \tilde{\mathbf{R}} \mathbf{Q} \mathbf{E}_{d^{(1)}}, \qquad \mathbf{Q} = \begin{bmatrix} 1 & \mathbf{O} \\ \mathbf{O} & \mathbf{Q}' \end{bmatrix}$$

- lacksquare $ilde{\mathbf{R}}$: an orthogonal initialized rotation matrix, first row is specifically uniformly distributed
- $\mathbf{E}_{d^{(1)}}$: switching matrix used to swap the first and the $d^{(1)}$ column of the activation
- $\blacksquare~ {f \hat{R}}~$ can mitigate outliers in the first column after the transformation by $\,{f E}_{d^{(1)}}$
- $lacksim {f Q}$: further increase the randomness of the rotation operation, ${f Q}'$ is a random orthogonal matrix
- Greedy search for N steps (once rotation may induce new outliers)
- $\hat{\mathbf{R}} = \mathbf{R}^1 \mathbf{R}^2 \cdots \mathbf{R}^n$ $n = rg \min_{k \in [1:N]} \left(\max_{i,j} |(\mathbf{X} \mathbf{R}^1 \cdots \mathbf{R}^k)_{ij}| \right)$

Block-wise rotation

For time and memory efficiency, we use block-wise rotation matrix

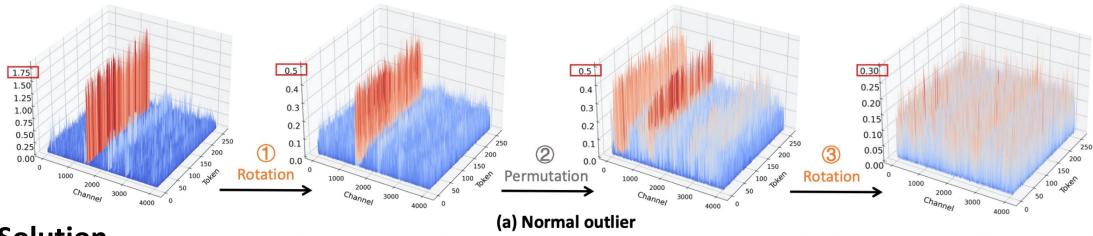
$$\hat{\mathbf{R}} = \operatorname{BlockDiag}(\hat{\mathbf{R}}_{b_1}, ..., \hat{\mathbf{R}}_{b_K}) \quad \hat{\mathbf{R}} \in \mathbb{R}^{C_{in} \times C_{in}} \quad \hat{\mathbf{R}}_{b_i} \in \mathbb{R}^{2^n \times 2^n}$$



Permutation

Limitation of Rotation

- Block-wise rotation: uneven outlier magnitudes across different blocks
- Measurement: Compute the variance of different blocks $Var([M_{b_1}, M_{b_2}, ..., M_{b_K}])$
 - For *i* block, the M_{b_i} represents the mean values of all O_j , O_j is the largest outlier in dimension d_j



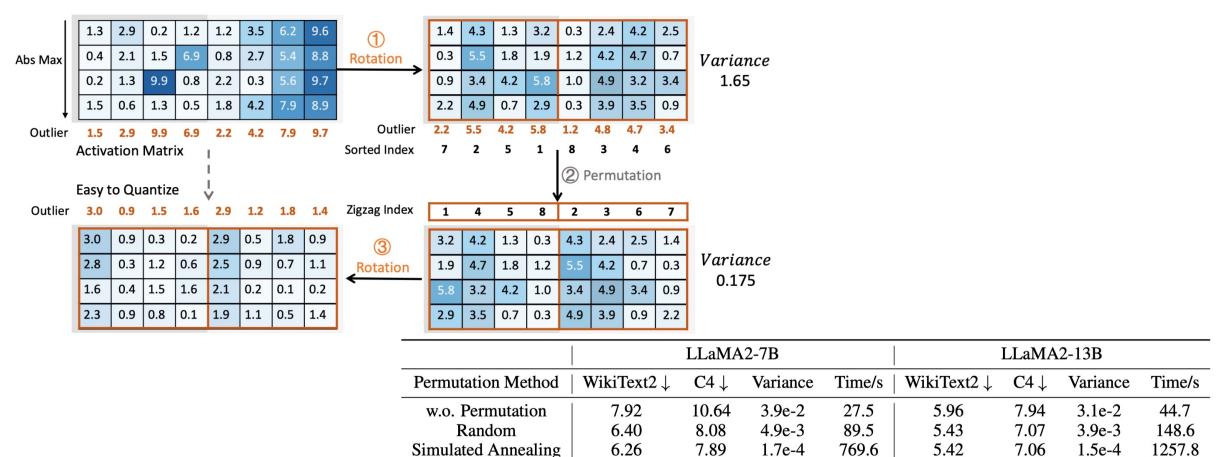
Solution

- Channel permutation to balance the distribution of outliers across blocks
- Permutation transformation is also orthogonal, denote as P
- After permutation, employ another rotation transformation to further smooth the activations

Zigzag Permutation

≻Zigzag Order

- Distribute the channels with the highest activations across the blocks in a back-and-forth pattern
- Fast with strong performance



6.28

Zigzag

7.90

3.0e-4

48.6

5.42

7.05

2.5e-4

74.0

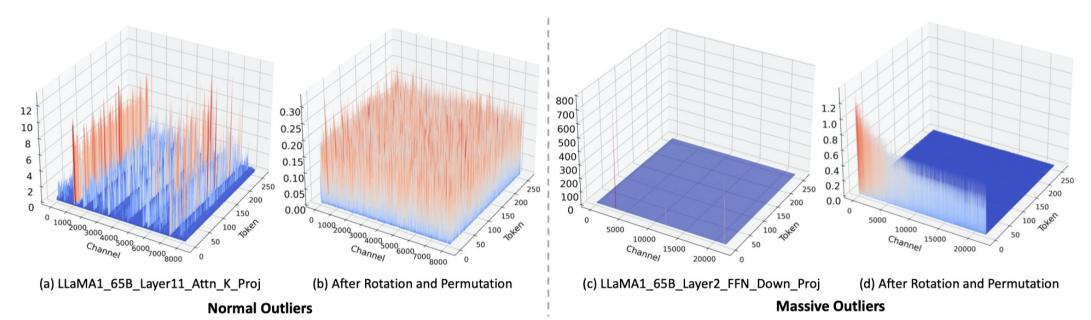
DuQuant

≻Linear Layer

- Smooth techniques (SmoothQuant)
- Block-wise Rotation (block size: 128)
- Permutation along with second Rotation

$$\mathbf{Y} = \mathbf{X} \cdot \mathbf{W} = [(\mathbf{X} \cdot \underbrace{\mathbf{\Lambda}^{-1}) \hat{\mathbf{R}}_{(1)} \cdot \mathbf{P} \cdot \hat{\mathbf{R}}_{(2)}}_{\mathbf{G}}] \cdot [\underbrace{\hat{\mathbf{R}}_{(2)}^{\top} \cdot \mathbf{P}^{\top} \cdot \hat{\mathbf{R}}_{(1)}^{\top} (\mathbf{\Lambda} \cdot \mathbf{W})}_{\mathbf{G}^{-1}}]$$

Visualization



10

DuQuant

Theoretical Analysis

Within Each block, the constructed rotation matrix effectively mitigates the maximum outlier

$$Eqn.(3) \quad \hat{\mathbf{R}} = \operatorname{BlockDiag}(\hat{\mathbf{R}}_{b_1}, ..., \hat{\mathbf{R}}_{b_K}) \quad \hat{\mathbf{R}} \in \mathbb{R}^{C_{in} \times C_{in}} \quad \hat{\mathbf{R}}_{b_i} \in \mathbb{R}^{2^n \times 2^n}$$

Theorem 1 (Rotation). For the activation input $\mathbf{X} \in \mathbb{R}^{T \times C_{in}}$, $\hat{\mathbf{R}} \in \mathbb{R}^{2^n \times 2^n}$ is a diagonal block matrix constructed as per Eqn. (3). For a specific block b_i , let $O_j(\cdot)$ represent the maximum outlier of the *j*-th dimension d_j within the input. Then, we can deduce that,

$$\max_{1 \le j \le 2^n} O_j(\mathbf{X}_{b_i} \hat{\mathbf{R}}_{b_i}) \le \max_{1 \le j \le 2^n} O_j(\mathbf{X}_{b_i}).$$
(6)

Zigzag permutation ensures a balanced upper bound shared among different blocks

Theorem 2 (Zigzag Permutation). For the activation input $\mathbf{X} \in \mathbb{R}^{T \times C_{in}}$, it can be divided into K blocks, where $K = C_{in}/2^n$. Let O_j denote the max outlier of the dimension d_j in \mathbf{X} , the reordered outliers from large to small is expressed as $O^{(1)}, O^{(2)}, ..., O^{(C_{in})}$. Moreover, the M_{b_i} represents the mean value of all O_j in the *i*-th block, i = 1, 2, ..., K. Let $\delta := \max\{|O^{(i+1)} - O^{(i)}|\}, i = 1, 2, ..., C_{in}-1$. Then, following the zigzag permutation, the mean value M_{b_i} within each *i*-th block consistently satisfies,

$$M_{b_i} \le O^{(1)} + \frac{(2^n K - 1)(2^{n-1} - 1)}{2^n} \delta, \qquad i = 1, 2, 3, ..., K.$$
(7)

> DuQuant: Rotation – Permutation – Rotation

• LWC[1]: adjusts weights by training parameters $\gamma, \beta \in [0,1]$ to compute the step size $\Delta = \frac{\gamma \max(\mathbf{X}) - \beta \min(\mathbf{X})}{2^b - 1}$

> Models: LLaMA1, LLaMA2, LLaMA3, Vicuna, Mistral

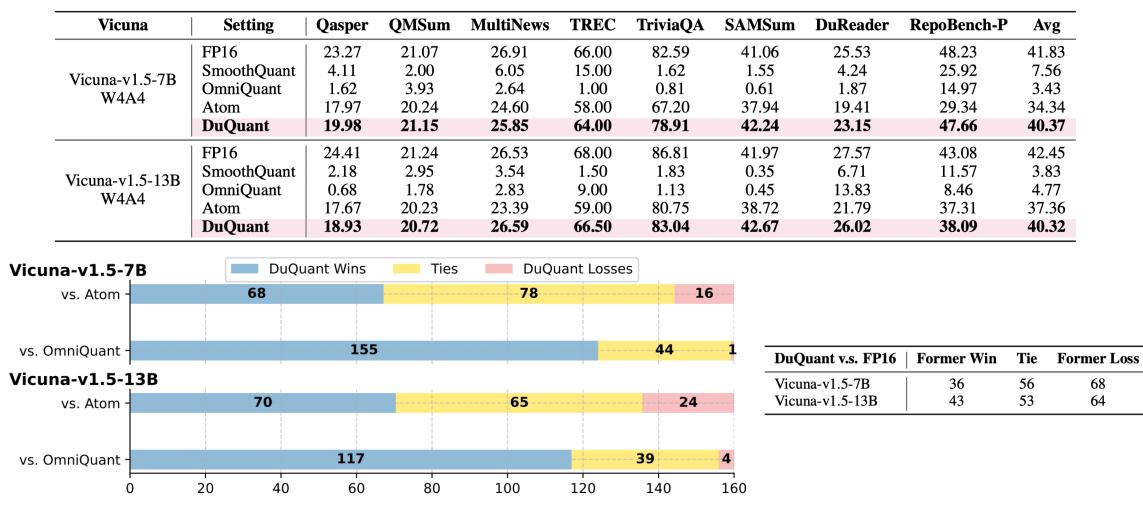
> Tasks: Language generation (PPL), Commonsense QA, MMLU, MT-Bench, LongBench

Dataset	#Bit	Method	1-7B	1-13B	1-30B	1-65B	2-7B	2-13B	2-70B
	FP16	-	5.68	5.09	4.10	3.53	5.47	4.88	3.31
		SmoothQuant	25.25	40.05	192.40	275.53	83.12	35.88	26.01
		OmniQuant	11.26	10.87	10.33	9.17	14.26	12.30	NaN
WikiText2		AffineQuant	10.28	10.32	9.35	-	12.69	11.45	-
	W4A4	QLLM	9.65	8.41	8.37	6.87	11.75	9.09	7.00
		Atom	8.15	7.43	6.52	5.14	8.40	6.96	NaN
		DuQuant	6.40	5.65	4.72	4.13	6.28	5.42	3.79
		DuQuant+LWC	6.18	5.47	4.55	3.93	6.08	5.33	3.76
	FP16		7.08	6.61	5.98	5.62	6.97	6.46	5.52
	W4A4	SmoothQuant	32.32	47.18	122.38	244.35	77.27	43.19	34.61
		OmniQuant	14.51	13.78	12.49	11.28	18.02	14.55	NaN
C4		AffineQuant	13.64	13.44	11.58	-	15.76	13.97	-
		QLLM	12.29	10.58	11.51	8.98	13.26	11.13	8.89
		Atom	10.34	9.57	8.56	8.17	10.96	9.12	NaN
		DuQuant	7.84	7.16	6.45	6.03	7.90	7.05	5.87
		DuQuant+Lwc	7.73	7.07	6.37	5.93	7.79	7.02	5.85

[1]. Shao, Wenqi, et al. "Omniquant: Omnidirectionally calibrated quantization for large language models." *ICLR*, 2024.

Models: LLaMA1, LLaMA2, LLaMA3, Vicuna, Mistral

> Tasks: Language generation (PPL), Commonsense QA, MMLU, MT-Bench, LongBench



Settings: LLaMA2-7B, Measure on RTX 3090, Input seq --- 2048, Decoding --- 128 steps

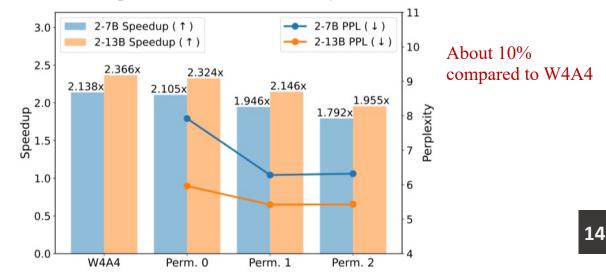
- Pre-filling stage --- computational bound, measure the speedup
- Decoding stage --- memory bound, measure the memory usage

LLaMA2-7B	Pre-filling (GB)	Saving	Decoding (GB)	Saving
FP16	15.282	-	13.638	-
SmoothQuant	4.782	3.196×	3.890	$3.506 \times$
QLLM	5.349	$2.857 \times$	3.894	$3.502 \times$
QuaRot	4.784	3.194×	3.891	$3.505 \times$
DuQuant	4.786	3.193×	3.893	$3.503 \times$

Peak memory usage with a batch size of 1.

End-to-end pre-filling speedup on LLaMA2-7B model.

Batch Size	FP16 Time	DuQuant Time	Speedup
1	568ms	294ms	1.93×
2	1003ms	509ms	$1.97 \times$
3	1449ms	720ms	$2.01 \times$



Decoding phase results of one LLaMA2-7B layer with a batch size of 64.

Method	Time (ms)	Saving Factor	Memory (GB)	Saving Factor
FP16	659	-	3.550	-
SmoothQuant	437	1.508x	1.669	2.127x
QLLM	OOM	-	OOM	-
QuaRot	457	1.442x	1.678	2.116x
DuQuant	499	1.321x	1.677	2.117x

Comparison with QuaRot [1]

- Better rotation --- utilize prior knowledge
- Permutation transformation --- further smooth activation landscape, better performance
- Jointly smooth weight and activations --- no need for GPTQ, faster

(a) Hadamard (b) Ours

Figure 4: LLaMA2-7B Attention key_proj.

Table F22: Evaluation results between QuaRot and DuQuant under QuaRot settings.

Model	Method	WikiText2↓	C4 \downarrow	PIQA	WinoGrande	HellaSwag	ARC-E	ARC-C	LAMBADA	Avg ↑
	FP16	5.47	6.97	79.11	69.06	75.99	74.58	46.25	73.90	69.82
LLaMA2-7B	QuaRot-RTN	8.37	-	72.09	60.69	65.4	58.88	35.24	57.27	58.26
W4A4	QuaRot-GPTQ	6.1	-	76.77	63.77	72.16	69.87	40.87	70.39	65.64
QuaRot Setting	DuQuant	6.23	7.91	76.28	66.93	72.96	69.99	40.53	69.61	66.05
	DuQuant+LWC	6.01	7.67	77.64	67.8	72.97	70.37	41.81	69.53	66.69
	FP16	4.88	6.46	80.47	72.22	79.39	77.48	49.23	76.75	72.59
LLaMA2-13B	QuaRot-RTN	6.09	-	77.37	67.32	73.11	70.83	43.69	70.66	67.16
W4A4	QuaRot-GPTQ	5.4	-	78.89	70.24	76.37	72.98	46.59	73.67	69.79
QuaRot Setting	DuQuant	5.39	7.05	78.51	70.88	76.80	74.62	48.21	73.92	70.49
	DuQuant+LWC	5.27	6.93	78.73	70.88	77.20	74.07	47.27	73.96	70.35

Table F24: Quantization runtime comparison on a single NVIDIA A100 80G GPU.

Model	LLaMA2-7B	LLaMA2-13B	LLaMA2-70B
QuaRot	20min	36min	5.1h
DuQuant	50s	71s	270s

Table 8: PPL (\downarrow) comparison under W4A4 setting.

		-			-
Method	1-7B	1-13B	1-30B	2-7B	2-13B
FP16	5.68	5.09	4.10	5.47	4.88
QuaRot-RTN	7.08	6.57	5.44	9.66	6.73
QuaRot-GPTQ	6.44	5.63	4.73	6.39	5.75
DuQuant	6.40	5.65	4.72	6.28	5.42
DuQuant+LWC	6.18	5.47	4.55	6.08	5.33

[1]. Ashkboos, Saleh, et al. "Quarot: Outlier-free 4-bit inference in rotated Ilms." *NeurIPS* 2024.

DuQuant: Distributing Outliers via Dual Transformation Makes Stronger Quantized LLMs

NeurIPS 2024 Oral

Haokun Lin^{*1,3,4}, Haobo Xu^{*2}, Yichen Wu^{*4}, Jingzhi Cui², Yingtao Zhang², Linzhan Mou⁵, Linqi Song⁴, Zhenan Sun^{^1,3}, Ying Wei^{^5}

> ^{*}Equal Contribution [^]Corresponding Authors ¹School of Artificial Intelligence, University of Chinese Academy of Sciences ²Tsinghua University ³NLPR & MAIS, Institute of Automation, Chinese Academy of Sciences ⁴City University of Hong Kong ⁵Zhejiang University

NEURAL INFORMATION PROCESSING SYSTEMS

Haokun Lin and Yichen Wu are actively seeking postdoctoral opportunities,

while Haobo Xu is exploring potential PhD positions.

Please feel free to reach out to us!

