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Network Quantization

Ø Network Quantization
Ø Reduce redundancy in network representation
Ø FP16 --- Low bits storage

Ø What to quantize? 
Ø Weights W
Ø Activations X
Ø Gradients
   

Ø The basic Quantization formulation
Ø 𝑋: Float format
Ø 𝑋!: Int format
Ø ∆: Scaling factor
Ø 𝑧: Zero point

Rounding Function
Nearest Rounding
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Motivation
ØMassive Outliers vs Normal Outliers

n Normal: large values across specific feature dimensions and present in all token sequences
n Massive: exceedingly high values and occur in a subset of tokens

ØOur Observations
n Massive Outliers Exist at the Second Linear Layer 
    (Down Projection) of FFN Module
n We are the first  to discover this phenomenon, 
    while previous works only focus on layer outputs

Normal Massive
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Motivation
Ø Our Observations

n Massive Outliers Exist at the Second Linear Layer (Down Proj) of FFN Module
n Traditional Methods fail to eliminate these massive outliers

• SmoothQuant[1]: cause the weights of the down-projection to display noticeable outliers
• OmniQuant[2] and AffineQuant[3]: optimization-based methods to encounter problems with loss explosion 

[1]. Xiao, Guangxuan, et al. "Smoothquant: Accurate and efficient post-training quantization for large language models." ICML, 2023.
[2]. Shao, Wenqi, et al. "Omniquant: Omnidirectionally calibrated quantization for large language models." ICLR, 2024.
[3]. Ma, Yuexiao, et al. "Affinequant: Affine transformation quantization for large language models." ICLR, 2024.
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DuQuant
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Rotation
Ø Method

n We first use Smooth technique [1] to balance the quantization difficulty
n Use rotation matrix to distribute the outliers to adjacent channels
n Ideal rotation matrix  𝑹

• Orthogonal
• Target the positions of outliers and mitigate them through matrix multiplication 

ØRotation with prior knowledge
n Use greedy search with prior knowledge (the feature dimension of outlier) to compute a rotation 

matrix
 

[1]. Xiao, Guangxuan, et al. "Smoothquant: Accurate and efficient post-training quantization for large language models." ICML, 2023.
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Rotation

ØBlock-wise rotation
n For time and memory efficiency, we use block-wise rotation matrix

ØRotation with prior knowledge
n Use greedy search with prior knowledge (the feature dimension of outlier) to compute a rotation matrix 
n The feature dimension 𝑑(") =
n Construct the rotation matrix by:

n      : an orthogonal initialized rotation matrix, first row is specifically uniformly distributed
n          : switching matrix used to swap the first and the 𝑑(") column of the activation
n       can mitigate outliers in the first column after the transformation by
n      : further increase the randomness of the rotation operation,       is a random orthogonal matrix 

Original

n Greedy search for 𝑁 steps (once rotation may induce new outliers) Rotation once
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Permutation
ØLimitation of Rotation

n Block-wise rotation: uneven outlier magnitudes across different blocks
n Measurement: Compute the variance of different blocks

• For 𝑖	block, the 𝑀!! represents the mean values of all 𝑂", 𝑂"  is the largest outlier in dimension 𝑑"

ØSolution
n Channel permutation to balance the distribution of outliers across blocks
n Permutation transformation is also orthogonal, denote as
n After permutation, employ another rotation transformation to further smooth the activations
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Zigzag Permutation
ØZigzag Order

n Distribute the channels with the highest activations across the blocks in a back-and-forth pattern
n Fast with strong performance
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DuQuant
ØLinear Layer

n Smooth techniques (SmoothQuant)
n Block-wise Rotation (block size: 128)
n Permutation along with second Rotation

ØVisualization
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DuQuant
ØTheoretical Analysis

n Within Each block, the constructed rotation matrix effectively mitigates the maximum outlier

n Zigzag permutation ensures a balanced upper bound shared among different blocks

𝐸𝑞𝑛. (3)
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Experiments
ØDuQuant: Rotation – Permutation – Rotation

n LWC[1]: adjusts weights by training parameters γ, 𝛽 ∈ [0,1] to compute the step size

ØModels: LLaMA1, LLaMA2, LLaMA3, Vicuna, Mistral
ØTasks: Language generation (PPL), Commonsense QA, MMLU, MT-Bench, LongBench

[1]. Shao, Wenqi, et al. "Omniquant: Omnidirectionally calibrated quantization for large language models." ICLR, 2024.
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Experiments
ØModels: LLaMA1, LLaMA2, LLaMA3, Vicuna, Mistral
ØTasks: Language generation (PPL), Commonsense QA, MMLU, MT-Bench, LongBench
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Experiments
ØSettings: LLaMA2-7B, Measure on RTX 3090, Input seq --- 2048, Decoding --- 128 steps

n Pre-filling stage --- computational bound, measure the speedup
n Decoding stage --- memory bound, measure the memory usage

End-to-end pre-filling speedup on LLaMA2-7B model.Peak memory usage with a batch size of 1.

Decoding phase results of one LLaMA2-7B layer with a batch size of 64.

Computational overhead analysis.

About 10% 
compared to W4A4
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Experiments
ØComparison with QuaRot [1]

n Better rotation --- utilize prior knowledge 
n Permutation transformation --- further smooth activation landscape, better performance
n Jointly smooth weight and activations --- no need for GPTQ, faster

[1]. Ashkboos, Saleh, et al. "Quarot: Outlier-free 4-bit inference in rotated llms." NeurIPS 2024.
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