Compressing Large Language Models using Low Rank and Low Precision Decomposition

Rajarshi Saha, Naomi Sagan, Varun Srivastava, Andrea J. Goldsmith, Mert Pilanci

> Stanford ENGINEERING Electrical Engineering

Image: Image:

Dec 9 - Dec 15, 2024 Vancouver

Compressing Large Language Models

[Credits: GPT-4 + DALL.E 3]

[Credits: FlashAttention, Dao et. al.]

- LLMs are memory hungry and often cannot be loaded on consumer GPUs: Eg: LLaMa 70B in BF16 takes up 140 GiB. Consumer GPUs (eg. NVIDIA A10G) have only 24 GiB of HBM.
- High inference latency (fewer tokens per second): Inference with low batch sizes is typically memory bound, i.e., back-and-forth communication between GPU HBM and SRAM is the bottleneck.
- Out-of-memory (OOM) issues while finetuning: Fine-tuning LLMs requires storing weights, activations, and optimizer states.
- Communication bandwidth becomes a bottleneck in distributed inference using multi-GPU (eg. NVLink) or multi-node (eg. InfiniBand).
- Increased model sharing latency (HuggingFace upload/download)
- Goal of our work: Compress an LLM while preserving its accuracy.

Low Rankness of LLM weights

- LLM weights (Query, Key, ...) are represented as matrices. Matrices are linear transforms on input
 activations. While compressing a weight matrix, we should preserve this functionality.
- Singular value decomposition: Any matrix $\mathbf{A} \in \mathbb{R}^{n imes d}$ can written as:

$$\mathbf{A} = \sum_{i=1}^{\mathrm{rank}(\mathbf{A})} \sigma_i \mathbf{u}_i \mathbf{v}_i^{\top},$$

where $\{\sigma_i\}$ are the singular values, and $\mathbf{u}_i \in \mathbb{R}^n$, $\mathbf{v}_i \in \mathbb{R}^d$ are singular vectors.

 Higher singular value components majorly capture how input activations are transformed into output activations for each layer in a forward pass.

We leverage the top singular components to compress weight matrices by obtaining an approximate low-rank structure!

<ロト < 同ト < ヨト < ヨ)

[Credits: GPT-4 + DALL.E 3]

- Low-precision formats also reduce memory footprint by using fewer bits to represent real numbers.
 Eg. INT4, FP4, MXFP4, ...
- Low-precision compute is faster.
 Eg. NVIDIA H100 specs: 1979 teraFLOPS with BFLOAT16 vs. 3958 teraFLOPS with FP8.
- · Low-precision operations also require fewer Watts, i.e., more energy efficient.

• • • • • • • • • • •

Low-precision and Low-Rank Decomposition

Problem: How to jointly obtain a low rank as well as low precision approximation of a matrix?

Calibration Aware Low-Precision and Low-Rank Decomposition

 $\min_{\mathbf{Q},\mathbf{L},\mathbf{R}} \| (\mathbf{Q} + \mathbf{L}\mathbf{R} - \mathbf{W}) \mathbf{X}^\top \|_F^2 \quad \text{subject to } \mathbf{Q},\mathbf{L},\mathbf{R} \text{ using } B_Q,B_L, \text{and } B_R \text{ bits respectively.}$

- Calibration data X: Sampled from RedPajama dataset.
- Low-rank factors L and R capture the large singular components of W with fewer parameters but high fidelity ($B_L = B_R = 4$ bits).
- Full-rank backbone Q is quantized aggressively (B_Q = 2 bits), coarsely capturing the essence of the moderately decaying and low singular components of W.
- Choose quantizers such that $B_Q = 2$ bits, $B_L = B_R = 4$ bits. For an LLM weight matrix with n = d = 4096, choosing rank k = 64 implies 2.125 bits per entry.

(日) (四) (日) (日) (日)

Calibration Aware Low-Precision and Low-Rank Decomposition

 $\min_{\mathbf{Q},\mathbf{L},\mathbf{R}} \| (\mathbf{Q} + \mathbf{L}\mathbf{R} - \mathbf{W}) \mathbf{X}^\top \|_F^2 \quad \text{subject to } \mathbf{Q},\mathbf{L},\mathbf{R} \text{ using } B_Q,B_L,\text{and } B_R \text{ bits respectively.}$

- CALDERA: Calibration Aware Low-Precision DEcomposition with Low-Rank Adaptation.
- Our algorithm: Alternately update Q and (L, R).
 - Initialize t ← 0, L₀ ← 0, R₀ ← 0.
 - o Step 1: $\mathbf{Q}_{t+1} \leftarrow \text{QUANTIZE}(\mathbf{W} \mathbf{L}_t \mathbf{R}_t)$ using B_Q bits. Solve min_Q $\|(\mathbf{Q} - \mathbf{L}_t \mathbf{R}_t - \mathbf{W}) \mathbf{X}^\top\|_F^2$ using LDLQ quantizer [Chee et al., NeurIPS '23].
 - Step 2: $\mathbf{L}_{t+1}, \mathbf{R}_{t+1} \leftarrow \text{LPLRFACTORIZE}(\mathbf{W} \mathbf{Q}_{t+1}, k)$, where (\mathbf{L}, \mathbf{R}) use (B_L, B_R) bits. Solve $\min_{\mathbf{L}, \mathbf{R}} \| (\mathbf{Q}_t - \mathbf{L}\mathbf{R} - \mathbf{W}) \mathbf{X}^\top \|_F^2$ (submodule described in next slide).

Iterate between Step 1 and Step 2 for a maximum number of iterations.

イロト イヨト イヨト

Low-Precision Low-Rank (LPLR) Factorize submodule

- Rank-constrained regression (RCR): min_{rank}(z) ≤ k ||XZ Y||²_F is a non-convex problem that can be solved to global optimality in closed form [Xiang et al., KDD '12].
- LPLRFactorize solves RCR subject to quantization constraints, i.e., $\min_{\mathbf{L},\mathbf{R}} \| (\mathbf{LR} \mathbf{A}) \mathbf{X}^\top \|_F^2$, where (\mathbf{L}, \mathbf{R}) are constrained to (B_L, B_R) bits.
- For fixed A, run an inner loop alternately update L and R.
 - Initialize $(\mathbf{L}_0, \mathbf{R}_0)$ from the RCR solution.
 - Step 1: $\mathbf{L}_i = \operatorname{Quantize}\left(\arg\min_{\mathbf{Z} \in \mathbb{R}^n \times k} \| (\mathbf{Z}\mathbf{R}_i \mathbf{A})\mathbf{X}^\top \|_{\mathrm{F}}^2 \right).$
 - $\circ \ \ \, \text{Step 2: } \mathbf{R}_i = \text{Quantize} \left(\arg \ \min_{\mathbf{Z} \in \mathbb{R}^k \times d} \| (\mathbf{L}_i \mathbf{Z} \mathbf{A}) \mathbf{X}^\top \|_F^2 \right).$
 - Iterate between Step 1 and Step 2 for a maximum number of inner iterations.
- Note: The solutions of minimization problems in steps 1 and 2 above are available in closed form.

Compressing LLaMa family of LLMs

Method	Rank	Avg Bits	Wiki2 \downarrow	C4 \downarrow	Wino ↑	$RTE\uparrow$	PiQA ↑	$ArcE \uparrow$	$ArcC\uparrow$
CALDERA (7B)	256	2.4	6.19	8.14	66.0	60.6	75.6	63.6	34.0
QuIP# (7B, No FT)	0	2	8.23	10.8	61.7	57.8	69.6	61.2	29.9
CALDERA (13B)	256	2.32	5.41	7.21	66.9	62.1	76.2	70.3	40.4
QuIP# (13B, No FT)	0	2	6.06	8.07	63.6	54.5	74.2	68.7	36.2
CALDERA (70B)	256	2.2	3.98	5.76	77.6	71.5	79.8	79.5	47.4
QuIP# (70B, No FT)	0	2	4.16	6.01	74.2	70.0	78.8	77.9	48.6

• Results on different sizes of LLaMa models (without finetuning):[†]

Can finetune randomized Hadamard transform (RHT) parameters for improved results:

Method	Rank	Avg Bits	Wiki2 ↓	C4 \downarrow	Wino ↑	$RTE\uparrow$	PiQA ↑	$ArcE \uparrow$	$ArcC \uparrow$
CALDERA (7B)	256	2.4	5.84	7.75	65.7	60.6	76.5	64.6	35.9
$QuIP\#^*$	0	2	6.58	8.62	64.4	53.4	75.0	64.8	34.0

• Low-rank factors can be (optionally) fine-tuned via LoRA to boost performance on specific tasks.

Method	Rank	RHT FT	Avg Bits**	Wiki2 ↓	RTE ↑	Wino ↑
CALDERA (7B)	128	Yes	2.5	5.77	84.12	85.00
CALDERA (7B)	256	Yes	2.7	5.55	86.28	84.93

[†]E8 lattice quantization with indices packed as INT64 data type.

Only end-to-end RHT finetuning, and not layer-by-layer finetuning. ** The top 64 components of L and R are in BF16.

- We propose CALDERA for compressing an LLM in the regime of 2 to 2.5 bits per parameter, with the goal
 of reducing the accuracy gap to uncompressed models.
- CALDERA provides a unified framework that jointly optimizes the backbone Q and the low-rank factors LR – providing the flexibility to represent them in different precisions.
- We provide rigorous theoretical guarantees on the approximation error of CALDERA, provably showing that it is better compared to rank-agnostic compression algorithms.
- Our CALDERA decomposition can be used with other strategies like randomized Hadamard transform fine-tuning [QuIP#], Low-Rank adaptation, etc.
- Auto-regressive generation throughput for the 2 to 2.5 bit-quantized model is higher than unquantized.

Thank you!

Reach out for questions or discussions

Poster Session: The 12 Dec 11 a.m. PST — 2 p.m. PST https://nips.cc/virtual/2024/poster/93805

Paper: https://arxiv.org/abs/2405.18886 GitHub: https://github.com/pilancilab/caldera

<ロト < 同ト < ヨト < ヨ)