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Compressing Large Language Models

[Credits: GPT-4 + DALL.E 3] [Credits: FlashAttention, Dao et. al.]

• LLMs are memory hungry and often cannot be loaded on consumer GPUs: Eg: LLaMa 70B in BF16
takes up 140 GiB. Consumer GPUs (eg. NVIDIA A10G) have only 24 GiB of HBM.

• High inference latency (fewer tokens per second): Inference with low batch sizes is typically memory
bound, i.e., back-and-forth communication between GPU HBM and SRAM is the bottleneck.

• Out-of-memory (OOM) issues while finetuning: Fine-tuning LLMs requires storing weights, activations,
and optimizer states.

• Communication bandwidth becomes a bottleneck in distributed inference using multi-GPU (eg.
NVLink) or multi-node (eg. InfiniBand).

• Increased model sharing latency (HuggingFace upload/download)

• Goal of our work: Compress an LLM while preserving its accuracy.
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Low Rankness of LLM weights

• LLM weights (Query, Key, ...) are represented as matrices. Matrices are linear transforms on input
activations. While compressing a weight matrix, we should preserve this functionality.

• Singular value decomposition: Any matrix A ∈ Rn×d can written as:

A =

rank(A)∑
i=1

σiuiv
⊤
i ,

where {σi} are the singular values, and ui ∈ Rn, vi ∈ Rd are
singular vectors.

• Higher singular value components majorly capture
how input activations are transformed into output
activations for each layer in a forward pass.

We leverage the top singular components to com-
press weight matrices by obtaining an approximate
low-rank structure!
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Low-precision representations

[Credits: GPT-4 + DALL.E 3]

• Low-precision formats also reduce memory footprint by using fewer bits to represent real numbers.
Eg. INT4, FP4, MXFP4, ...

• Low-precision compute is faster.
Eg. NVIDIA H100 specs: 1979 teraFLOPS with BFLOAT16 vs. 3958 teraFLOPS with FP8.

• Low-precision operations also require fewer Watts, i.e., more energy efficient.
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Low-precision and Low-Rank Decomposition

Problem: How to jointly obtain a low rank as well as low precision approximation of a matrix?
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Calibration Aware Low-Precision and Low-Rank Decomposition

min
Q,L,R

∥(Q + LR−W)X
⊤∥2F subject to Q,L,R using BQ,BL, and BR bits respectively.

• Calibration data X: Sampled from RedPajama dataset.

• Low-rank factors L and R capture the large singular components of W with fewer parameters but high
fidelity (BL = BR = 4 bits).

• Full-rank backbone Q is quantized aggressively (BQ = 2 bits), coarsely capturing the essence of the
moderately decaying and low singular components of W.

• Choose quantizers such that BQ = 2 bits, BL = BR = 4 bits. For an LLM weight matrix with
n = d = 4096, choosing rank k = 64 implies 2.125 bits per entry.
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Our Algorithm: CALDERA

Calibration Aware Low-Precision and Low-Rank Decomposition

min
Q,L,R

∥(Q + LR−W)X
⊤∥2F subject to Q,L,R using BQ,BL, and BR bits respectively.

• CALDERA: Calibration Aware Low-Precision DEcomposition with Low-Rank Adaptation.

• Our algorithm: Alternately update Q and (L,R).

◦ Initialize t← 0, L0 ← 0, R0 ← 0.

◦ Step 1: Qt+1 ← Quantize(W − LtRt) using BQ bits.

Solve minQ∥(Q− LtRt −W)X⊤∥2F using LDLQ quantizer [Chee et al., NeurIPS ’23].

◦ Step 2: Lt+1,Rt+1 ← LPLRFactorize(W −Qt+1, k), where (L,R) use (BL,BR) bits.

Solve minL,R∥(Qt − LR−W)X⊤∥2F (submodule described in next slide).

◦ Iterate between Step 1 and Step 2 for a maximum number of iterations.
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Low-Precision Low-Rank (LPLR) Factorize submodule

• Rank-constrained regression (RCR): minrank(Z)≤k∥XZ−Y∥2F is a non-convex problem that can be

solved to global optimality in closed form [Xiang et al., KDD ’12].

• LPLRFactorize solves RCR subject to quantization constraints, i.e., minL,R∥(LR−A)X⊤∥2F, where
(L,R) are constrained to (BL,BR) bits.

• For fixed A, run an inner loop alternately update L and R.

◦ Initialize (L0,R0) from the RCR solution.

◦ Step 1: Li = Quantize
(
arg min

Z∈Rn×k∥(ZRi −A)X⊤∥2F
)
.

◦ Step 2: Ri = Quantize
(
arg min

Z∈Rk×d∥(LiZ−A)X⊤∥2F
)
.

◦ Iterate between Step 1 and Step 2 for a maximum number of inner iterations.

• Note: The solutions of minimization problems in steps 1 and 2 above are available in closed form.

Saha, Sagan, Srivastava, Goldsmith, Pilanci CALDERA Dec 9 - Dec 15, 2024 Vancouver 7 / 10



Compressing LLaMa family of LLMs

• Results on different sizes of LLaMa models (without finetuning):†

Method Rank Avg Bits Wiki2 ↓ C4 ↓ Wino ↑ RTE ↑ PiQA ↑ ArcE ↑ ArcC ↑

CALDERA (7B) 256 2.4 6.19 8.14 66.0 60.6 75.6 63.6 34.0
QuIP# (7B, No FT) 0 2 8.23 10.8 61.7 57.8 69.6 61.2 29.9

CALDERA (13B) 256 2.32 5.41 7.21 66.9 62.1 76.2 70.3 40.4
QuIP# (13B, No FT) 0 2 6.06 8.07 63.6 54.5 74.2 68.7 36.2

CALDERA (70B) 256 2.2 3.98 5.76 77.6 71.5 79.8 79.5 47.4
QuIP# (70B, No FT) 0 2 4.16 6.01 74.2 70.0 78.8 77.9 48.6

• Can finetune randomized Hadamard transform (RHT) parameters for improved results:

Method Rank Avg Bits Wiki2 ↓ C4 ↓ Wino ↑ RTE ↑ PiQA ↑ ArcE ↑ ArcC ↑

CALDERA (7B) 256 2.4 5.84 7.75 65.7 60.6 76.5 64.6 35.9

QuIP#* 0 2 6.58 8.62 64.4 53.4 75.0 64.8 34.0

• Low-rank factors can be (optionally) fine-tuned via LoRA to boost performance on specific tasks.

Method Rank RHT FT Avg Bits** Wiki2 ↓ RTE ↑ Wino ↑

CALDERA (7B) 128 Yes 2.5 5.77 84.12 85.00
CALDERA (7B) 256 Yes 2.7 5.55 86.28 84.93

†E8 lattice quantization with indices packed as INT64 data type.
*Only end-to-end RHT finetuning, and not layer-by-layer finetuning. **The top 64 components of L and R are in BF16.
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Summary

• We propose CALDERA for compressing an LLM in the regime of 2 to 2.5 bits per parameter, with the goal
of reducing the accuracy gap to uncompressed models.

• CALDERA provides a unified framework that jointly optimizes the backbone Q and the low-rank factors
LR – providing the flexibility to represent them in different precisions.

• We provide rigorous theoretical guarantees on the approximation error of CALDERA, provably showing that
it is better compared to rank-agnostic compression algorithms.

• Our CALDERA decomposition can be used with other strategies like randomized Hadamard transform
fine-tuning [QuIP#], Low-Rank adaptation, etc.

• Auto-regressive generation throughput for the 2 to 2.5 bit-quantized model is higher than unquantized.
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Thank you!

Reach out for questions or discussions

Poster Session:
The 12 Dec 11 a.m. PST — 2 p.m. PST
https://nips.cc/virtual/2024/poster/93805

Paper: https://arxiv.org/abs/2405.18886
GitHub: https://github.com/pilancilab/caldera
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