

S²FT: Efficient, Scalable and Generalizable LLM Fine-tuning by Structured Sparsity

Xinyu Yang¹, Jixuan Leng¹, Geyang Guo², Jiawei Zhao³, Ryumei Nakada⁴, Linjun Zhang⁴, Huaxiu Yao⁵, Beidi Chen¹ ¹Carnegie Mellon University, ²Georgia Tech, ³Caltech, ⁴Rutgers, ⁵UNC-Chapel Hill

Introduction

Why using S ² FT instead of Full FT or LoRA?										
	High Quality		Efficient Training		Scalable Serving					
	ID	OOD	Time	Memory	Fusion	Switch	Parallelism			
Full FT	~~	~	×	×	×	×	×			
LoRA	~	×	~	~	~	~	~			
S ² FT	~	~~	~~	~~	~~	11	~~			

Structured Sparse Fine-Tuning (S²FT), is a family of PEFT methods for LLMs that achieves high quality, efficient training, and scalable serving simultaneously. Compared to LoRA, S²FT offers several key advantages: (i) High Quality: enhanced generalization ability on both commonsense and arithmetic reasoning with 4.6% and 1.3% average improvements. (ii) Efficient Training: 10% reduced training time and memory, (iii) Scalable Serving: effective fusion, fast switch, and efficient parallelism when serving multiple adapters. These features are particularly valuable for the large-scale, real-world deployment of foundation models in various domains.

Observation

Sparse FT demonstrate better generalization ability.

The counterintuitive observation that selecting channels with the smallest activations leads to improved performance further support this finding.

Task S ² FT-R		S ² F	T-W	S ² FT-A		S ² FT-S		S ² FT-G	
		Large	Small	Large	Small	Large	Small	Large	Small
Knowled	lge 86.6	85.9 <mark>(-0.7)</mark>	85.3 <mark>(-1.3)</mark>	84.7 <mark>(-1.9)</mark>	87.3 _(+0.7)	85.1 _(-1.5)	87.2 _(+0.6)	85.4 <mark>(-1.2)</mark>	86.2 <mark>(-0.4)</mark>
Arithme	tic 79.6	78.4 <mark>(-1.2)</mark>	78.4 <mark>(-1.2)</mark>	77.1 <mark>(-2.5)</mark>	80.0 _(+0.4)	76.8 <mark>(-2.8)</mark>	79.8 _(+0.2)	77.8 <mark>(-1.8)</mark>	79.5 <mark>(-0.1)</mark>

Method

Step 2: Compute densely after co-permutation

Experimental Results

a) High Quality on Commonsense Reasoning: OBQA Method #Param BoolO PIQA SIQA HellaSwag Wino ARC-e ARC-c Avg. 1 73.9 86.2 79.1 93.1 85.8 88.1 78.2 84.0 83.6 100 Μ 0.70 70.8 85.2 79.7 92.5 84.9 88.9 78.7 84.4 82.5 0.71 74.6 89.3 79.9 95.5 85.6 90.5 80.4 85.8 85.2 LI 83.4 87.8 86.6 0.70 75.0 89 0 80 7 96.5 88.0 92.5

b) High Quality on Arithmetic Reasoning:

Full FT

LoRA

DoRA

S²FT

Meth	nod	#Param	MultiArit	n GSM8K	AddSub	AQuA	SingleEq	SVAMP	MAWPS	Avg. ↑
Full F	·т	100	99.2	62.0	93.9	26.8	96.7	74.0	91.2	77.7
LoRA		0.70	99.5	61.6	92.7	25.6	96.3	73.8	90.8	77.2
DoR/	Ą	0.71	98.8	62.7	92.2	26.8	96.9	74.0	91.2	77.5
S ² FT		0.70	99.7	65.8	93.7	31.5	97.8	76.0	92.4	79.6

c) High Qua	ality on	Instru	ction-F	ollowing	:					
	Method	Writing	Roleplay	Reasoning	Code	Math	Extraction	STEM	Humanities	Avş
	Vanilla	5.25	3.20	4.50	1.60	2.70	6.50	6.17	4.65	4.3
	Full FT	5.50	4.45	5.45	2.50	3.25	5.78	4.75	5.45	4.6
Missard 7D	LoRA	5.30	4.40	4.65	2.35	3.30	5.50	5.55	4.30	4.4
Mistrai-/B	Galore	5.05	5.27	4.45	1.70	2.50	5.21	5.52	5.20	4.3
	LISA	6.84	3.65	5.45	2.20	2.75	5.65	5.95	6.35	4.8
	Ours	6.95	4.40	5.50	2.70	3.55	5.95	6.35	6.75	5.2
	Vanilla	2.75	4.40	2.80	1.55	1.80	3.20	5.25	4.60	3.2
	Full FT	5.55	6.45	3.60	1.75	2.00	4.70	6.45	7.50	4.7
11.140.70	LoRA	6.30	5.65	4.05	1.60	1.45	4.17	6.20	6.20	4.4
LLaMA2-/B	Galore	5.60	6.40	3.20	1.25	1.95	5.05	6.57	7.00	4.6
	LISA	6.55	6.90	3.45	1.60	2.16	4.50	6.75	7.65	4.9
	Ours	6.75	6.60	4.15	1.65	1.85	4.75	7.45	8.38	5.2

d) Efficient Training with varying sequence lengths and batch sizes :

e) Scalable Serving through effective adapter fusion:

		-		-			
Task		LoRA		S ² FT			
	Adapter 1	Adapter 2	Fused	Adapter 1	Adapter 2	Fused	
Commonsense	83.1	32.1	79.8 _(-3.3)	86.6	42.3	84.0 _(-2.6)	
Arithmetic	12.0	77.2	71.6 _(-5.6)	12.8	79.6	75.3 _(-4.3)	

f) Scalable Serving through fast switch and efficient parallelism:

Available sources:

- Code: https://github.com/Infini-AI-Lab/S2FT 0
- Blog: https://infini-ai-lab.github.io/S2FT-Page/ 0
- Paper: https://arxiv.org/abs/2412.06289