Improved Sample Complexity for Multiclass PAC Learning

Steve Hanneke ¹ Shay Moran ² Qian Zhang ³

¹Purdue University, steve.hanneke@gmail.com

²Technion and Google Research, smoran@technion.ac.il

³Purdue University, zhan3761@purdue.edu

November 2024

Multiclass PAC learning

- X: feature space.
- \mathcal{Y} : label space, a set with $|\mathcal{Y}| > 2$ ($|\mathcal{Y}|$ can be infinite).
- $\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}}$: concept class.
- Error rate of a classifier h : X → Y under a probability distribution P over X × Y:

$$\operatorname{er}_P(h) := P(\{(x, y) \in \mathcal{X} \times \mathcal{Y} : h(x) \neq y\}).$$

• A distribution P is called $(\mathcal{H}$ -)realizable if

 $\inf_{h \in \mathcal{H}} \operatorname{er}_P(h) = 0.$

• $\operatorname{RE}(\mathcal{H})$: the set of all \mathcal{H} -realizable distributions.

Multiclass PAC learning

- A multiclass learner (or a learner) \mathcal{A} is an algorithm which given a sequence $\mathbf{s} \in \bigcup_{n=0}^{\infty} (\mathcal{X} \times \mathcal{Y})^n$ and a concept class $\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}}$, outputs a classifier $\mathcal{A}(\mathbf{s}, \mathcal{H}) \in \mathcal{Y}^{\mathcal{X}}$.
- The (PAC) sample complexity of \mathcal{A} is the function

$$M_{\mathcal{A},\mathcal{H}}: (0,1)^2 \to \mathbb{N}, (\varepsilon,\delta) \mapsto \inf\{n \in \mathbb{N} : \mathbb{P}_{S \sim P^m}(\operatorname{er}_P(\mathcal{A}(S,\mathcal{H})) > \varepsilon) \le \delta, \ \forall m \ge n, P \in \operatorname{RE}(\mathcal{H})\}$$

with the convention $\inf \emptyset = \infty$.

H is PAC learnable by *A* if *M*_{A,H}(ε, δ) < ∞ for all (ε, δ) ∈ (0, 1)². The (PAC) sample complexity of *H* is defined as *M*_H(ε, δ) := inf_A *M*_{A,H}(ε, δ), ∀(ε, δ) ∈ (0, 1)².

Multiclass PAC learning

• Expected error rate

 $\varepsilon_{\mathcal{A},\mathcal{H},P}: \mathbb{N} \to [0,1], \quad n \mapsto \mathbb{E}_{S \sim P^n}[\operatorname{er}_P(\mathcal{A}(S,\mathcal{H}))].$

Define $\varepsilon_{\mathcal{A},\mathcal{H}} := \sup_{P \in \operatorname{RE}(\mathcal{H})} \varepsilon_{\mathcal{A},\mathcal{H},P}$ and $\varepsilon_{\mathcal{H}} := \inf_{\mathcal{A}} \varepsilon_{\mathcal{A},\mathcal{H}}$.

Transductive error rate

$$\varepsilon_{\mathcal{A},\mathcal{H},\mathsf{trans}}:\mathbb{N}\to[0,1],$$

 $n \mapsto \sup_{\mathbf{s} = ((x_1, h(x_1)), \dots, (x_n, h(x_n))) \in (\mathcal{X} \times \mathcal{Y})^n : h \in \mathcal{H}} \frac{1}{n} \sum_{i=1}^n \mathbb{1}_{h(x_i) \neq \mathcal{A}(\mathbf{s}_{-i}, \mathcal{H})(x_i)}.$

Define $\varepsilon_{\mathcal{H}, \text{trans}} := \inf_{\mathcal{A}} \varepsilon_{\mathcal{A}, \mathcal{H}, \text{trans}}$.

- By a leave-one-out argument, we have $\varepsilon_{\mathcal{A},\mathcal{H}} \leq \varepsilon_{\mathcal{A},\mathcal{H},trans}$.
- Theorem 2.6. Suppose $\varepsilon_{\mathcal{A},\mathcal{H},P}(n) \leq M_n/n \ \forall n \in \mathbb{N}$ and $P \in \operatorname{RE}(\mathcal{H})$ with M_n nondecreasing in n. Then, there exists a learner \mathcal{A}' such that for any $P \in \operatorname{RE}(\mathcal{H})$, $\delta \in (0,1)$, and $n \geq 4$, sampling $S \sim P^n$, with probability at least 1δ ,

$$\operatorname{er}_P(\mathcal{A}'(S,\mathcal{H})) \le 4.82 \cdot (8.34M_{\lfloor n/2 \rfloor} + \log(2/\delta))/n.$$

Pseudo-cube and DS dimension

- For $d,k\in\mathbb{N},$ a set $H\subseteq\mathcal{Y}^d$ is called a k-pseudo-cube of dimension d if
 - $0 < |H| < \infty$ and
 - For any $h \in H$ and $i \in [d]$, there are at least k *i*-neighbors of h (g is an *i*-neighbor of h if $g(i) \neq h(i)$ and g(j) = h(j) for all $j \in [d] \setminus \{i\}$).
- $\mathbf{x} = (x_1, \dots, x_d) \in \mathcal{X}^d$ is k-DS-shattered by $\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}}$ if $\mathcal{H}|_{\mathbf{x}} := \{(h(x_1), \dots, h(x_d)) : h \in \mathcal{H}\}$ contains a *d*-dimensional *k*-pseudo-cube.
- The k-DS dimension of $\mathcal{H}(\dim_k(\mathcal{H}))$ is the maximum size of a k-DS-shattered sequence.
- Pseudo-cube and DS dimension (dim) correspond to 1-pseudo and 1-DS dimension (dim₁).

Existing results

- Brukhim et al. [2022] proved that
 - a class $\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}}$ is PAC learnable if and only if $d := \dim(\mathcal{H}) < \infty$;
 - there exists a multiclass learner \mathcal{A} which for any $P \in \operatorname{RE}(\mathcal{H})$, $\delta \in (0, 1)$, $n \in \mathbb{N}$, and $S \sim P^n$, satisfies that with probability at least 1δ ,

$$\operatorname{er}_{P}(\mathcal{A}(S,\mathcal{H})) = O\left(\frac{(d^{3/2}\log(d) + d\log(\log(n)))\log^{2}(n) + \log(1/\delta)}{n}\right).$$
(1)

• Charikar and Pabbaraju [2023] proved $\varepsilon_{\mathcal{H}}(n) = \Omega(d/n)$.

One-inclusion graph

- The one-inclusion graph (OIG) of H ⊆ Yⁿ is a hypergraph G(H) = (H, E) where H is the vertex-set and E is the edge-set defined as follows.
- For any $i \in [n]$ and $f : [n] \setminus \{i\} \to \mathcal{Y}$, define the set $e_{i,f} := \{h \in H : h(j) = f(j), \forall j \in [n] \setminus \{i\}\}.$
- The edge-set is

$$E := \{ (e_{i,f}, i) : i \in [n], f : [n] \setminus \{i\} \to \mathcal{Y}, e_{i,f} \neq \emptyset \}.$$

 For any (e_{i,f}, i) ∈ E and h ∈ H, we say h ∈ (e_{i,f}, i) if h ∈ e_{i,f}. The size of the edge is |(e_{i,f}, i)| := |e_{i,f}|.

Degree and density

- For any hypergraph G = (V, E) and $v \in V$, the **degree** of v in G is $\deg(v; G) := |\{e \in E : v \in e, |e| \ge 2\}|$, written $\deg(v)$ in abbreviation.
- If $|V| < \infty$, the average degree and average out-degree of G are

$$\begin{split} & \operatorname{avgdeg}(G) := \frac{1}{|V|} \sum_{v \in V} \operatorname{deg}(v; G) = \frac{1}{|V|} \sum_{e \in E: |e| \geq 2} |e|, \\ & \operatorname{avgoutdeg}(G) := \frac{1}{|V|} \sum_{e \in E} (|e| - 1). \end{split}$$

• For general V, the maximal average degree of G is

$$\mathsf{md}(G) := \sup_{U \subseteq V : |U| < \infty} \mathsf{avgdeg}(G[U]),$$

where G[U] = (U, E[U]) with $E[U] := \{e \cap U : e \in E, e \cap U \neq \emptyset\}$. • The **density** of $\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}}$ is defined as

$$\mu_{\mathcal{H}}(m) := \sup_{\mathbf{x} \in \mathcal{X}^m} \operatorname{md}(\mathcal{G}(\mathcal{H}|_{\mathbf{x}})), \ \forall m \in \mathbb{N}.$$

Main results

- $\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}}$ is **nondegenerate** if there exist $h_1, h_2 \in \mathcal{H}$ and $x_0, x_1 \in \mathcal{X}$ such that $h_1(x_0) = h_2(x_0)$ and $h_1(x_1) \neq h_2(x_1)$.
- *H* is **degenerate** if it is not nondegenerate.
- Theorem 1.9 (Partial summary of Theorem 2.5 and 2.11). For any nondegenerate concept class H ⊆ Y^X with dim(H) = d and any (ε, δ) ∈ (0, 1)², we have

$$\Omega\left(\frac{d+\log(1/\delta)}{\varepsilon}\right) \le \mathcal{M}_{\mathcal{H}}(\varepsilon,\delta) \le O\left(\frac{d^{3/2}\log(d)\log(d/\varepsilon) + \log(1/\delta)}{\varepsilon}\right).$$
(2)

Upper bound via list learning

Theorem 1.10 (Informal summary of Theorem 2.7 and 2.10). Assume that there exists a list learner which, given a concept class \mathcal{H} with dim $(\mathcal{H}) = d$ and training sequence of size n, outputs a menu of size $p(\mathcal{H}, n)$ with expected error rate upper bounded by $\beta(\mathcal{H}, n)/n$ for some functions p and β nondecreasing in n. Then, there exists a multiclass learner whose error rate is

$$O\left(\frac{\beta(\mathcal{H},n)+d\log(p(\mathcal{H},n))+\log(1/\delta)}{n}\right)$$
 with probability at least $1-\delta$.

Moreover, there exists a list learner satisfying

$$\begin{split} p(\mathcal{H},n) &= O\big((e\sqrt{d})^{\sqrt{d}}\log(n)\big) \text{ and } \\ \beta(\mathcal{H},n) &= O\big(d^{3/2}\log(d)\log(n)\big). \end{split}$$

List learning

- A menu of size k is a function µ : X → {Y ⊆ Y : |Y| ≤ k}. A 1-menu can be viewed as a classifier in Y^X, and vice versa.
- A list learner A of size k is an algorithm which, given a sequence s ∈ ∪_{n=0}[∞] (X × Y)ⁿ and a concept class H ⊆ Y^X, outputs a k-menu A(s, H). A 1-list learner can be viewed as a multiclass learner, and vice versa.
- Charikar and Pabbaraju [2023] proved that \mathcal{H} is k-list learnabale if and only if $d_k := \dim_k(\mathcal{H}) < \infty$, and there exists a k-list learner \mathcal{A}^k which for any $P \in \operatorname{RE}(\mathcal{H})$, $\delta \in (0, 1)$, $n \in \mathbb{N}$, and $S \sim P^n$, satisfies that with probability at least 1δ ,

$$\operatorname{er}_{P}(\mathcal{A}^{k}(S,\mathcal{H})) = O\left(\frac{k^{6}d_{k}(\sqrt{d_{k}}\log(d_{k}) + \log(k\log(n)))\log^{2}(n) + \log(1/\delta)}{n}\right).$$
 (3)

• Charikar and Pabbaraju [2023] proved the lower bound $\varepsilon^k_{\mathcal{H}}(n) = \Omega\left(d_k/(kn)\right).$

Lower bound

- A concept class $\mathcal{H} \in \mathcal{Y}^{\mathcal{X}}$ is called *k*-nondegenerate for $k \in \mathbb{N}$ if there exist $h_1, \ldots, h_{k+1} \in \mathcal{H}$ and $x_0, x_1 \in \mathcal{X}$ such that $|\{h_j(x_0) : j \in [k+1]\}| = 1$ and $|\{h_j(x_1) : j \in [k+1]\}| = k+1.$
- *H* is called *k*-degenerate if it is not *k*-nondegenerate.
- Theorem 2.5. For any $k \in \mathbb{N}$, k-nondegenerate concept class $\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}}$ with $\dim_k(\mathcal{H}) = d_k \in \mathbb{N}$, $\varepsilon \in \left(0, \frac{1}{8(k+1)}\right)$, and $\delta \in \left(0, \frac{1}{4(k+1)}\right)$, we have

$$\mathcal{M}_{\mathcal{H}}^k(\varepsilon,\delta) \ge \frac{(d_k-1)\log(2)+4\log(1/\delta)}{16(k+1)\varepsilon}$$

In particular, when k=1, for any $\varepsilon\in(0,1/16)$ and $\delta\in(0,1/8),$ we have

$$\mathcal{M}_{\mathcal{H}}(\varepsilon,\delta) \ge \frac{(\dim(\mathcal{H})-1)\log(2)+4\log(1/\delta)}{32\varepsilon}.$$
 (4)

Reduction from multiclass learning to list learning

Algorithm 1: Multiclass learner \mathcal{A}_{red} using a list learner \mathcal{A}_{list}

Input: List learner $\mathcal{A}_{\text{list}}$, concept class $\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}}$, training sequence $S = ((x_1, y_1), \dots, (x_n, y_n)) \in (\mathcal{X} \times \mathcal{Y})^n$ for $n \ge 3$, test feature $x_{n+1} \in \mathcal{X}$. **Output:** A label $y \in \mathcal{Y}$ for the feature x_{n+1} . 1 $n_1 \leftarrow n - 2 |n/3|, n_2 \leftarrow |n/3|;$ 2 $S^1 \leftarrow ((x_i, y_i))_{i \in [n_1]}, S^2 \leftarrow ((x_i, y_i))_{i=n_1+1}^n,$ $\mathbf{x}' \leftarrow (x_{n_1+1}, \ldots, x_n, x_{n+1});$ $\widehat{\mu} \leftarrow \mathcal{A}_{\text{list}}(S^1, \mathcal{H}), \ N \leftarrow \sum_{(x,y) \in S^2} \mathbb{1}_{y \notin \widehat{\mu}(x)};$ 5 Sample $(I_1, \ldots, I_{n_2}) \sim \text{Unif}([2n_2])^{n_2}$; 6 $\widehat{h} \leftarrow A_G(T, \mathcal{H}_{\mathbf{x}'})$ where $T \leftarrow ((I_i, y_{I_i+n_1}))_{i \in [n_2]};$ 7 return the label $\hat{h}(2n_2+1)$.

Reduction from multiclass learning to list learning

- In step 6 of Algorithm 1, A_G is a multiclass PAC learner for classes H of bounded graph dimension (dim_G(H)) [Natarajan and Tadepalli, 1988].
- We prove in Proposition H.5 that for any $\mathcal{D} \in \operatorname{RE}(\mathcal{H})$, $n \in \mathbb{N}$, $\delta \in (0, 1)$, and $S \sim \mathcal{D}^n$, with probability at least 1δ ,

$$\operatorname{er}_{\mathcal{D}}(A_G(S,\mathcal{H})) = O\left(\frac{\dim_G(\mathcal{H}) + \log(1/\delta)}{n}\right)$$

Sampled boosting of list learners

- Brukhim et al. [2022] proposed a list sample compression scheme of size $r = O(d^{3/2} \log(n))$ for concept classes of DS dimension d and sample size n.
- Its error rate is $O\left((r \log(n/r) + \log(1/\delta))/n\right)$ by standard techniques for sample compression schemes [David et al., 2016]. There is an extra log factor $\log(n/r)$.
- da Cunha et al. [2024] proposed stable randomized sample compression schemes and a subsampling-based boosting algorithm for weak learners for binary classification whose generalization does not induce the extra log factor in *n*.
- For $K \in \mathbb{N}$ menus μ_1, \ldots, μ_K each of size p, we define their majority vote to be $\mu = Maj(\mu_1, \ldots, \mu_K)$ with

 $Maj(\mu_1, \dots, \mu_K)(x) := \{ y \in \mathcal{Y} : |\{k \in [K] : y \in \mu_k(x)\}| > K/2 \}, \ \forall x \in \mathcal{X}.$

• μ has size 2p-1. For p=1, the above definition recovers the majority vote of classifiers.

Sampled boosting of list learners

Algorithm 2: Sampled boosting A_{boost} of a list learner A_{list}

Input: List learner $\mathcal{A}_{\text{list}}$, concept class $\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}}$, training sequence $S = \{(x_1, y_1), \dots, (x_n, y_n)\} \in (\mathcal{X} \times \mathcal{Y})^n, \ \gamma \in (0, 1/2),$ $\nu \in (0, \gamma/18], \delta \in (0, 1).$ **Output:** Menu μ . 1 for i = 1, ..., n do 2 $\mathcal{D}_1(\{(x_i, y_i)\}) \leftarrow 1/n;$ 3 $\alpha \leftarrow \frac{1}{2} \log \left((1+\gamma)/(1-\gamma) \right), \ m \leftarrow \mathcal{M}_{\mathcal{A}_{\text{list}},\mathcal{H}}(1/2-\gamma,\nu),$ $K \leftarrow \left[4\log(n/\delta)/\gamma\right];$ 4 for k = 1, ..., K do Draw m samples $S^k \sim \mathcal{D}_k^m$; 5 $\mu_k \leftarrow \mathcal{A}_{\text{list}}(S^k, \mathcal{H});$ 6 for $i = 1, \ldots, n$ do 7 $\mathcal{D}_{k+1}(\{(x_i, y_i)\}) \leftarrow \mathcal{D}_k(\{(x_i, y_i)\}) \exp\left(-\alpha \left(2\mathbb{1}_{y_i \in \mu_k(x_i)} - 1\right)\right);$ 8 $\mathcal{D}_{k+1} \leftarrow \mathcal{D}_{k+1} / \left(\sum_{i=1}^{n} \mathcal{D}_{k}(\{(x_{i}, y_{i})\}) \exp\left(-\alpha \left(2\mathbb{1}_{y_{i} \in u_{i}, (x_{i})} - 1\right) \right) \right);$ 9 10 return $\mu \leftarrow \operatorname{Maj}((\mu_k)_{k \in [K]})$.

Sampled boosting of list learners

Theorem 2.8. Assume that $\mathcal{A}_{\text{list}}$ is a list learner with $\mathcal{M}_{\mathcal{A}_{\text{list}},\mathcal{H}}(1/2 - \gamma, \nu) < \infty$ for some $\gamma \in (0, 1/2)$ and $\nu \in (0, \gamma/18]$. Then, for any $\mathcal{D} \in \text{RE}(\mathcal{H})$, $n \in \mathbb{N}$, and $\delta > 0$, sampling $S \sim \mathcal{D}^n$, with probability at least $1 - \delta$, the menu μ produced by $\mathcal{A}_{\text{boost}}$ using $\mathcal{A}_{\text{list}}$ in Algorithm 2 satisfies that

$$\operatorname{er}_{\mathcal{D}}(\mu) = O\left(\frac{\mathcal{M}_{\mathcal{A}_{\operatorname{list}}}, \mathcal{H}(1/2 - \gamma, \nu) \log(n/\delta)}{\gamma n}\right).$$

Theorem 2.10. There exists a list learner \mathcal{A}_L which for any $\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}}$ with dim $(\mathcal{H}) = d$ and sample size $n \in \mathbb{N}$ outputs a menu of size $O((e\sqrt{d})^{\sqrt{d}}\log(n))$ with $\varepsilon_{\mathcal{A}_L,\mathcal{H}}(n) = O\left(\frac{d^{3/2}\log(d)\log(n)}{n}\right)$.

Improved upper bound

• **Theorem 2.11.** There exists a multiclass learner $\mathcal{A}_{\text{multi}}$ such that for any $\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}}$ of DS dimension d, $\mathcal{D} \in \text{RE}(\mathcal{H})$, $\delta \in (0, 1)$, $n \geq d + 1$, and $S \sim \mathcal{D}^n$, with probability at least $1 - \delta$, we have

$$\operatorname{er}_{\mathcal{D}}(\mathcal{A}_{\operatorname{multi}}(S,\mathcal{H})) = O\left(\frac{d^{3/2}\log(d)\log(n) + \log(1/\delta)}{n}\right),$$
 (5)

which implies that

$$\mathcal{M}_{\mathcal{A}_{\text{multi}},\mathcal{H}}(\varepsilon,\delta) = O\left(\frac{d^{3/2}\log(d)\log(d/\varepsilon) + \log(1/\delta)}{\varepsilon}\right), \ \forall \varepsilon, \delta \in (0,1).$$

• The existing upper bound in Brukhim et al. [2022]: $O\left(\frac{(d^{3/2}\log(d)+d\log(\log(n)))\log^2(n)+\log(1/\delta)}{n}\right).$

Improved upper bound

Theorem 2.11 (cont'd). If there exists a list learner $\mathcal{A}_{\text{goodlist}}$ of size $f_1(d)$ and expected error rate $\varepsilon_{\mathcal{A}_{\text{goodlist}},\mathcal{H}}(n) \leq f_2(d)/n$ for some functions $f_1 : \mathbb{N} \to \mathbb{N}$ and $f_2 : \mathbb{N} \to [0,\infty)$, then, there exists a multiclass learner \mathcal{A}_{lin} such that

$$\mathcal{M}_{\mathcal{A}_{\mathrm{lin}},\mathcal{H}}(\varepsilon,\delta) = O\left(\frac{d\log(f_1(d)) + f_2(d) + \log(1/\delta)}{\varepsilon}\right), \ \forall \varepsilon, \delta \in (0,1).$$

Open Question 1. Does there exist a list learner such that given a concept class $\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}}$, its size is $f_1(\dim(\mathcal{H}))$ and its expected error rate is $\varepsilon_{\mathcal{A}_{\text{list}},\mathcal{H}}(n) = f_2(\dim(\mathcal{H}))/n$ for some functions $f_1 : \mathbb{N} \to \mathbb{N}$ and $f_2 : \mathbb{N} \to [0, \infty)$?

Density, DS dimension, and PAC learning

• **Proposition 3.1** (Daniely and Shalev-Shwartz 2014, Charikar and Pabbaraju 2023, Aden-Ali et al. 2023). For any $\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}}$ and $n \in \mathbb{N}$, we have

$$\mu_{\mathcal{H}}(n)/(2en) \le \varepsilon_{\mathcal{H}} \le \varepsilon_{\mathcal{H}, \text{trans}} \le \mu_{\mathcal{H}}(n)/n.$$
(6)

Assume that $\mu_{\mathcal{H}}(n) \leq f(\dim(\mathcal{H}))$ for some function $f: \mathbb{N} \to [0, \infty)$ and all $n \in \mathbb{N}$. Then, there exists a learner \mathcal{A} based on orienting the one-clusion graph of the projected concept class [Aden-Ali et al., 2023, Appendix A] with sample complexity $\mathcal{M}_{\mathcal{A},\mathcal{H}}(\varepsilon,\delta) = O(\frac{f(\dim(\mathcal{H})) + \log(1/\delta)}{\varepsilon}), \forall \varepsilon, \delta \in (0,1).$

- Haussler et al. [1994] proved that $\mu_{\mathcal{H}} \leq 2 \operatorname{dim}(\mathcal{H})$ for binary classes, which motivates the conjecture for multiclasses.
- **Theorem 3.2.** For any $\mathcal{H} \subseteq \mathcal{Y}^{\mathcal{X}}$ with dim $(\mathcal{H}) = 1$, we have $\mu_{\mathcal{H}}(n) \leq 2$, $\forall n \in \mathbb{N}$. Thus, $\mathcal{M}_{\mathcal{H}}(\varepsilon, \delta) = \Theta(\log(1/\delta)/\varepsilon)$ for any positive $\varepsilon, \delta \in O(1)$ and any \mathcal{H} with dim $(\mathcal{H}) = 1$.

- Motivated by the proof for binary classes [Haussler et al., 1994, Lemma 2.4], we consider upper bounding the density by induction on the size of the sequence the class projects to.
- The analysis for binary classes does not apply to general concept classes.
- The analysis in the induction step proceeds seamlessly for some special concept classes where a common label which we call a "pivot" exists for each edge in the last dimension of size greater than 1 in its one-inclusion graph.

Pivot shifting

Definition 3.5 (Pivot of finite concept class). For any $n \in \mathbb{N} \setminus \{1\}$ and $V_n \subseteq \mathcal{Y}^n$, we define

$$\mathfrak{P}(V_n) := \bigcup_{y \in \mathcal{Y}} \bigcup_{y' \in \mathcal{Y} \setminus \{y\}} \{ (y_1, \dots, y_{n-1}) \in \mathcal{Y}^{n-1} : (y_1, \dots, y_{n-1}, y), (y_1, \dots, y_{n-1}, y') \in V_n \}.$$

 $a \in \mathcal{Y}$ is said to be a **pivot** of V_n if $(y_1, \ldots, y_{n-1}, a) \in V_n$ for all $(y_1, \ldots, y_{n-1}) \in \mathfrak{P}(V_n)$. When $\mathfrak{P}(V_n) = \emptyset$, every $a \in \mathcal{Y}$ is a pivot of V_n . **Lemma 3.6.** Assume that for some $n \in \mathbb{N} \setminus \{1\}$, any $d \in \mathbb{N}$, any $m \in [n-1]$, and any $H \subseteq \mathcal{Y}^m$ with $\dim(H) \leq d$ and $|H| < \infty$, we have avgoutdeg $(\mathcal{G}(H)) \leq d$. Consider an arbitrary set $V_n \subseteq \mathcal{Y}^n$ such that $|V_n| < \infty$ and $\dim(V_n) \leq d$. If V_n has a pivot, then we have avgoutdeg $(\mathcal{G}(V_n)) \leq d$.

Pivot shifting

For any $n \in \mathbb{N} \setminus \{1\}$, $a \in \mathcal{Y}$, and $V_n \subseteq \mathcal{Y}^n$ with $|V_n| < \infty$, we define

$$\mathfrak{P}_{a}(V_{n}) := \bigcup_{y \in \mathcal{Y}} \{ (y_{1}, \dots, y_{n-1}) \in \mathcal{Y}^{n-1} : (y_{1}, \dots, y_{n-1}, y) \in V_{n}, \\ (y_{1}, \dots, y_{n-1}, a) \notin V_{n} \}.$$

For $\mathbf{y} = (y_1, \dots, y_{n-1}) \in \mathfrak{P}_a(V_n)$ and the edge $(e_{n,\mathbf{y}}, n)$ in $\mathcal{G}(V_n)$, define

$$L_{\mathbf{y}} := \{ y \in \mathcal{Y} : (y_1, \dots, y_{n-1}, y) \in (e_{n, \mathbf{y}}, n) \}.$$

A mapping $\gamma : \mathfrak{P}_a(V_n) \to \mathcal{Y}$ is called a **pivot shifting** on V_n to a if $\gamma(\mathbf{y}) \in L_{\mathbf{y}}$ for all $\mathbf{y} \in \mathfrak{P}_a(V_n)$. Let Γ_{a,V_n} denote the set of all pivot shifting on V_n to a. For any $\gamma \in \Gamma_{a,V_n}$, we define

$$V_n^{\gamma} := (V_n \setminus \{ (\mathbf{y}, \gamma(\mathbf{y})) : \mathbf{y} \in \mathfrak{P}_a(V_n) \}) \cup \{ (\mathbf{y}, a) : \mathbf{y} \in \mathfrak{P}_a(V_n) \} ;$$

i.e., $V_{n,\gamma}$ is obtained by replacing the label $\gamma(\mathbf{y})$ in $(\mathbf{y}, \gamma(\mathbf{y}))$ with a for all $\mathbf{y} \in \mathfrak{P}_a(V_n)$.

Pivot shifting

• Lemma 3.8. For any $a \in \mathcal{Y}$, $V \subseteq \bigcup_{n=2}^{\infty} \mathcal{Y}^n$ with $|V| < \infty$, and $\gamma \in \Gamma_{a,V}$, we have

 $\mathrm{avgoutdeg}(\mathcal{G}(V^{\gamma})) \geq \mathrm{avgoutdeg}(\mathcal{G}(V)).$

- Open Question 2. For any $d \in \mathbb{N}$ and any $V \subseteq \bigcup_{n=d+2}^{\infty} \mathcal{Y}^n$ with $|V| < \infty$ and dim(V) = d, are there some $a \in \mathcal{Y}$ and $\gamma \in \Gamma_{a,V}$ such that dim $(V^{\gamma}) \leq d$?
- A positive resolution of the above question would lead to the conclusion that $\mu_{\mathcal{H}} \leq 2 \dim(\mathcal{H})$.

Thank You!

I. Aden-Ali, Y. Cherapanamjeri, A. Shetty, and N. Zhivotovskiy. Optimal pac bounds without uniform convergence. In *2023 IEEE* 64th Annual Symposium on Foundations of Computer Science (FOCS), pages 1203–1223, Los Alamitos, CA, USA, nov 2023. IEEE Computer Society. doi: 10.1109/FOCS57990.2023.00071. URL

https://doi.ieeecomputersociety.org/10.1109/FOCS57990.202

- Nataly Brukhim, Daniel Carmon, Irit Dinur, Shay Moran, and Amir Yehudayoff. A characterization of multiclass learnability. In 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS), pages 943–955. IEEE, 2022.
- Moses Charikar and Chirag Pabbaraju. A characterization of list learnability. In *Proceedings of the 55th Annual ACM Symposium on Theory of Computing*, STOC 2023, page 1713–1726, New York, NY, USA, 2023. Association for Computing Machinery. ISBN 9781450399135. doi: 10.1145/3564246.3585190. URL https://doi.org/10.1145/3564246.3585190.

Arthur da Cunha, Kasper Green Larsen, and Martin Ritzert.

Boosting, voting classifiers and randomized sample compression schemes. *arXiv preprint arXiv:2402.02976*, 2024.

- Amit Daniely and Shai Shalev-Shwartz. Optimal learners for multiclass problems. In *Conference on Learning Theory*, pages 287–316. PMLR, 2014.
- Ofir David, Shay Moran, and Amir Yehudayoff. Supervised learning through the lens of compression. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors, *Advances in Neural Information Processing Systems*, volume 29. Curran Associates, Inc., 2016. URL

https://proceedings.neurips.cc/paper_files/paper/2016/fil

- D. Haussler, N. Littlestone, and M. Warmuth. Predicting $\{0,1\}$ -functions on randomly drawn points. *Information and Computation*, 115(2):248–292, 1994.
- Balas K Natarajan and Prasad Tadepalli. Two new frameworks for learning. In *Machine Learning Proceedings 1988*, pages 402–415. Elsevier, 1988.