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Multiclass PAC learning

• X : feature space.

• Y: label space, a set with |Y| > 2 (|Y| can be infinite).

• H ⊆ YX : concept class.

• Error rate of a classifier h : X → Y under a probability
distribution P over X × Y:

erP (h) := P ({(x, y) ∈ X × Y : h(x) 6= y}).

• A distribution P is called (H-)realizable if

inf
h∈H

erP (h) = 0.

• RE(H): the set of all H-realizable distributions.
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Multiclass PAC learning

• A multiclass learner (or a learner) A is an algorithm which
given a sequence s ∈ ∪∞n=0(X × Y)n and a concept class
H ⊆ YX , outputs a classifier A(s,H) ∈ YX .
• The (PAC) sample complexity of A is the function

MA,H : (0, 1)2 → N,

(ε, δ) 7→ inf{n ∈ N : PS∼Pm(erP (A(S,H)) > ε) ≤ δ, ∀m ≥ n, P ∈ RE(H)}

with the convention inf ∅ =∞.

• H is PAC learnable by A ifMA,H(ε, δ) <∞ for all
(ε, δ) ∈ (0, 1)2. The (PAC) sample complexity of H is
defined asMH(ε, δ) := infAMA,H(ε, δ), ∀(ε, δ) ∈ (0, 1)2.
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Multiclass PAC learning

• Expected error rate

εA,H,P : N→ [0, 1], n 7→ ES∼Pn [erP (A(S,H))].
Define εA,H := supP∈RE(H) εA,H,P and εH := infA εA,H.
• Transductive error rate

εA,H,trans : N→ [0, 1],

n 7→ sup
s=((x1,h(x1)),...,(xn,h(xn)))∈(X×Y)n:h∈H

1
n

∑n
i=1 1h(xi) 6=A(s−i,H)(xi).

Define εH,trans := infA εA,H,trans.
• By a leave-one-out argument, we have εA,H ≤ εA,H,trans.
• Theorem 2.6. Suppose εA,H,P (n) ≤Mn/n ∀n ∈ N and
P ∈ RE(H) with Mn nondecreasing in n. Then, there exists
a learner A′ such that for any P ∈ RE(H), δ ∈ (0, 1), and
n ≥ 4, sampling S ∼ Pn, with probability at least 1− δ,

erP (A′(S,H)) ≤ 4.82 · (8.34M⌊n/2⌋ + log(2/δ))/n.
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Pseudo-cube and DS dimension

• For d, k ∈ N, a set H ⊆ Yd is called a k-pseudo-cube of
dimension d if
• 0 < |H| <∞ and
• For any h ∈ H and i ∈ [d], there are at least k i-neighbors of

h (g is an i-neighbor of h if g(i) 6= h(i) and g(j) = h(j) for all
j ∈ [d]\{i}).

• x = (x1, . . . , xd) ∈ X d is k-DS-shattered by H ⊆ YX if
H|x := {(h(x1), . . . , h(xd)) : h ∈ H} contains a d-dimensional
k-pseudo-cube.

• The k-DS dimension of H (dimk(H)) is the maximum size of
a k-DS-shattered sequence.

• Pseudo-cube and DS dimension (dim) correspond to 1-pseudo
and 1-DS dimension (dim1).

5/27



Existing results

• Brukhim et al. [2022] proved that
• a class H ⊆ YX is PAC learnable if and only if

d := dim(H) <∞;
• there exists a multiclass learner A which for any P ∈ RE(H),

δ ∈ (0, 1), n ∈ N, and S ∼ Pn, satisfies that with probability
at least 1− δ,

erP (A(S,H)) = O
(

(d3/2 log(d)+d log(log(n))) log2(n)+log(1/δ)
n

)
.

(1)

• Charikar and Pabbaraju [2023] proved εH(n) = Ω (d/n).
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One-inclusion graph

• The one-inclusion graph (OIG) of H ⊆ Yn is a hypergraph
G(H) = (H,E) where H is the vertex-set and E is the
edge-set defined as follows.

• For any i ∈ [n] and f : [n]\{i} → Y, define the set
ei,f := {h ∈ H : h(j) = f(j), ∀j ∈ [n]\{i}}.
• The edge-set is

E := {(ei,f , i) : i ∈ [n], f : [n]\{i} → Y, ei,f 6= ∅}.

• For any (ei,f , i) ∈ E and h ∈ H, we say h ∈ (ei,f , i) if
h ∈ ei,f . The size of the edge is |(ei,f , i)| := |ei,f |.
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Degree and density

• For any hypergraph G = (V,E) and v ∈ V , the degree of v in G is
deg(v;G) := |{e ∈ E : v ∈ e, |e| ≥ 2}|, written deg(v) in
abbreviation.

• If |V | <∞, the average degree and average out-degree of G are

avgdeg(G) := 1
|V |

∑
v∈V deg(v;G) = 1

|V |

∑
e∈E:|e|≥2 |e|,

avgoutdeg(G) := 1
|V |

∑
e∈E(|e| − 1).

• For general V , the maximal average degree of G is

md(G) := supU⊆V :|U |<∞ avgdeg(G[U ]),

where G[U ] = (U,E[U ]) with E[U ] := {e ∩ U : e ∈ E, e ∩ U 6= ∅}.
• The density of H ⊆ YX is defined as

µH(m) := supx∈Xm md(G(H|x)), ∀m ∈ N.
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Main results

• H ⊆ YX is nondegenerate if there exist h1, h2 ∈ H and
x0, x1 ∈ X such that h1(x0) = h2(x0) and h1(x1) 6= h2(x1).

• H is degenerate if it is not nondegenerate.

• Theorem 1.9 (Partial summary of Theorem 2.5 and 2.11).
For any nondegenerate concept class H ⊆ YX with
dim(H) = d and any (ε, δ) ∈ (0, 1)2, we have

Ω
(
d+log(1/δ)

ε

)
≤MH(ε, δ) ≤ O

(
d3/2 log(d) log(d/ε)+log(1/δ)

ε

)
.

(2)
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Upper bound via list learning

Theorem 1.10 (Informal summary of Theorem 2.7 and 2.10).
Assume that there exists a list learner which, given a concept class
H with dim(H) = d and training sequence of size n, outputs a
menu of size p(H, n) with expected error rate upper bounded by
β(H, n)/n for some functions p and β nondecreasing in n. Then,
there exists a multiclass learner whose error rate is

O
(
β(H,n)+d log(p(H,n))+log(1/δ)

n

)
with probability at least 1− δ.

Moreover, there exists a list learner satisfying

p(H, n) = O
(
(e
√
d)

√
d log(n)

)
and

β(H, n) = O
(
d3/2 log(d) log(n)

)
.

10/27



List learning

• A menu of size k is a function µ : X → {Y ⊆ Y : |Y| ≤ k}. A
1-menu can be viewed as a classifier in YX , and vice versa.

• A list learner A of size k is an algorithm which, given a
sequence s ∈ ∪∞n=0(X × Y)n and a concept class H ⊆ YX ,
outputs a k-menu A(s,H). A 1-list learner can be viewed as a
multiclass learner, and vice versa.
• Charikar and Pabbaraju [2023] proved that H is k-list
learnabale if and only if dk := dimk(H) <∞, and there exists
a k-list learner Ak which for any P ∈ RE(H), δ ∈ (0, 1),
n ∈ N, and S ∼ Pn, satisfies that with probability at least
1− δ,

erP (Ak(S,H)) = O

(

k6dk(
√

dk log(dk)+log(k log(n))) log2(n)+log(1/δ)

n

)

. (3)

• Charikar and Pabbaraju [2023] proved the lower bound
εkH(n) = Ω (dk/(kn)).
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Lower bound

• A concept class H ∈ YX is called k-nondegenerate for k ∈ N

if there exist h1, . . . , hk+1 ∈ H and x0, x1 ∈ X such that
|{hj(x0) : j ∈ [k + 1]}| = 1 and
|{hj(x1) : j ∈ [k + 1]}| = k + 1.

• H is called k-degenerate if it is not k-nondegenerate.

• Theorem 2.5. For any k ∈ N, k-nondegenerate concept class

H ⊆ YX with dimk(H) = dk ∈ N, ε ∈
(
0, 1

8(k+1)

)
, and

δ ∈
(
0, 1

4(k+1)

)
, we have

Mk
H(ε, δ) ≥ (dk−1) log(2)+4 log(1/δ)

16(k+1)ε .

In particular, when k = 1, for any ε ∈ (0, 1/16) and
δ ∈ (0, 1/8), we have

MH(ε, δ) ≥ (dim(H)−1) log(2)+4 log(1/δ)
32ε . (4)
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Reduction from multiclass learning to list learning

Algorithm 1: Multiclass learner Ared using a list learner Alist

Input: List learner Alist, concept class H ⊆ YX , training sequence
S = ((x1, y1), . . . , (xn, yn)) ∈ (X × Y)n for n ≥ 3, test
feature xn+1 ∈ X .

Output: A label y ∈ Y for the feature xn+1.
1 n1 ← n− 2⌊n/3⌋, n2 ← ⌊n/3⌋;
2 S1 ← ((xi, yi))i∈[n1], S2 ← ((xi, yi))

n
i=n1+1,

x′ ← (xn1+1, . . . , xn, xn+1);
3 µ̂← Alist(S

1,H), N ←∑
(x,y)∈S2 1y/∈µ̂(x);

4 Hx′ ← {h|x′ : h ∈ H, |{i ∈ [n+ 1]\[n1] : h(xi) /∈ µ̂(xi)}| ≤ N + 1};
5 Sample (I1, . . . , In2

) ∼ Unif([2n2])
n2 ;

6 ĥ← AG(T,Hx′) where T ← ((Ij , yIj+n1
))j∈[n2];

7 return the label ĥ(2n2 + 1).
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Reduction from multiclass learning to list learning

• In step 6 of Algorithm 1, AG is a multiclass PAC learner for
classes H of bounded graph dimension (dimG(H))
[Natarajan and Tadepalli, 1988].

• We prove in Proposition H.5 that for any D ∈ RE(H), n ∈ N,
δ ∈ (0, 1), and S ∼ Dn, with probability at least 1− δ,

erD(AG(S,H)) = O
(
dimG(H)+log(1/δ)

n

)
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Sampled boosting of list learners

• Brukhim et al. [2022] proposed a list sample compression
scheme of size r = O(d3/2 log(n)) for concept classes of DS
dimension d and sample size n.

• Its error rate is O ((r log(n/r) + log(1/δ))/n) by standard
techniques for sample compression schemes
[David et al., 2016]. There is an extra log factor log(n/r).

• da Cunha et al. [2024] proposed stable randomized sample
compression schemes and a subsampling-based boosting
algorithm for weak learners for binary classification whose
generalization does not induce the extra log factor in n.
• For K ∈ N menus µ1, . . . , µK each of size p, we define their
majority vote to be µ = Maj(µ1, . . . , µK) with

Maj(µ1, . . . , µK)(x) := {y ∈ Y : |{k ∈ [K] : y ∈ µk(x)}| > K/2} , ∀x ∈ X .

• µ has size 2p− 1. For p = 1, the above definition recovers the
majority vote of classifiers.
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Sampled boosting of list learners

Algorithm 2: Sampled boosting Aboost of a list learner Alist

Input: List learner Alist, concept class H ⊆ YX , training sequence
S = {(x1, y1), . . . , (xn, yn)} ∈ (X × Y)n, γ ∈ (0, 1/2),
ν ∈ (0, γ/18], δ ∈ (0, 1).

Output: Menu µ.
1 for i = 1, . . . , n do
2 D1({(xi, yi)})← 1/n;

3 α← 1
2
log ((1 + γ)/(1− γ)), m←MAlist,H(1/2− γ, ν),

K ← ⌈4 log(n/δ)/γ⌉;
4 for k = 1, . . . ,K do

5 Draw m samples Sk ∼ Dm
k ;

6 µk ← Alist(S
k,H);

7 for i = 1, . . . , n do
8 Dk+1({(xi, yi)})← Dk({(xi, yi)}) exp

(

−α
(

21yi∈µk(xi) − 1
))

;

9 Dk+1 ← Dk+1/
(
∑n

i=1Dk({(xi, yi)}) exp
(

−α
(

21yi∈µk(xi) − 1
)))

;

10 return µ← Maj
(

(µk)k∈[K]

)

.
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Sampled boosting of list learners

Theorem 2.8. Assume that Alist is a list learner with
MAlist,H(1/2− γ, ν) <∞ for some γ ∈ (0, 1/2) and ν ∈ (0, γ/18].
Then, for any D ∈ RE(H), n ∈ N, and δ > 0, sampling S ∼ Dn,
with probability at least 1− δ, the menu µ produced by Aboost

using Alist in Algorithm 2 satisfies that

erD(µ) = O
(MAlist,H

(1/2−γ,ν) log(n/δ)

γn

)
.

Theorem 2.10. There exists a list learner AL which for any
H ⊆ YX with dim(H) = d and sample size n ∈ N outputs a menu

of size O
(
(e
√
d)

√
d log(n)

)
with εAL,H(n) = O

(
d3/2 log(d) log(n)

n

)
.
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Improved upper bound

• Theorem 2.11. There exists a multiclass learner Amulti such
that for any H ⊆ YX of DS dimension d, D ∈ RE(H),
δ ∈ (0, 1), n ≥ d+ 1, and S ∼ Dn, with probability at least
1− δ, we have

erD(Amulti(S,H)) = O
(
d3/2 log(d) log(n)+log(1/δ)

n

)
, (5)

which implies that

MAmulti,H(ε, δ) = O
(
d3/2 log(d) log(d/ε)+log(1/δ)

ε

)
, ∀ε, δ ∈ (0, 1).

• The existing upper bound in Brukhim et al. [2022]:

O
(
(d3/2 log(d)+d log(log(n))) log2(n)+log(1/δ)

n

)
.
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Improved upper bound

Theorem 2.11 (cont’d). If there exists a list learner Agoodlist of
size f1(d) and expected error rate εAgoodlist,H(n) ≤ f2(d)/n for
some functions f1 : N→ N and f2 : N→ [0,∞), then, there exists
a multiclass learner Alin such that

MAlin,H(ε, δ) = O
(
d log(f1(d))+f2(d)+log(1/δ)

ε

)
, ∀ε, δ ∈ (0, 1).

Open Question 1. Does there exist a list learner such that given
a concept class H ⊆ YX , its size is f1(dim(H)) and its expected
error rate is εAlist,H(n) = f2(dim(H))/n for some functions
f1 : N→ N and f2 : N→ [0,∞)?

19/27



Density, DS dimension, and PAC learning

• Proposition 3.1 (Daniely and Shalev-Shwartz 2014,
Charikar and Pabbaraju 2023, Aden-Ali et al. 2023). For any
H ⊆ YX and n ∈ N, we have

µH(n)/(2en) ≤ εH ≤ εH,trans ≤ µH(n)/n. (6)

Assume that µH(n) ≤ f(dim(H)) for some function f : N→ [0,∞)
and all n ∈ N. Then, there exists a learner A based on orienting the
one-clusion graph of the projected concept class
[Aden-Ali et al., 2023, Appendix A] with sample complexity

MA,H(ε, δ) = O
( f(dim(H))+log(1/δ)

ε

)
, ∀ε, δ ∈ (0, 1).

• Haussler et al. [1994] proved that µH ≤ 2dim(H) for binary classes,
which motivates the conjecture for multiclasses.

• Theorem 3.2. For any H ⊆ YX with dim(H) = 1, we have
µH(n) ≤ 2, ∀n ∈ N. Thus,MH(ε, δ) = Θ (log(1/δ)/ε) for any
positive ε, δ ∈ O(1) and any H with dim(H) = 1.
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Pivot shifting

• Motivated by the proof for binary classes
[Haussler et al., 1994, Lemma 2.4], we consider upper
bounding the density by induction on the size of the sequence
the class projects to.

• The analysis for binary classes does not apply to general
concept classes.

• The analysis in the induction step proceeds seamlessly for
some special concept classes where a common label which we
call a “pivot” exists for each edge in the last dimension of size
greater than 1 in its one-inclusion graph.
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Pivot shifting

Definition 3.5 (Pivot of finite concept class). For any n ∈ N\{1} and
Vn ⊆ Yn, we define

P(Vn) := ∪y∈Y ∪y′∈Y\{y}

{
(y1, . . . , yn−1) ∈ Yn−1 :

(y1, . . . , yn−1, y), (y1, . . . , yn−1, y
′) ∈ Vn

}
.

a ∈ Y is said to be a pivot of Vn if (y1, . . . , yn−1, a) ∈ Vn for all
(y1, . . . , yn−1) ∈ P(Vn). When P(Vn) = ∅, every a ∈ Y is a pivot of Vn.

Lemma 3.6. Assume that for some n ∈ N\{1}, any d ∈ N, any

m ∈ [n− 1], and any H ⊆ Ym with dim(H) ≤ d and |H| <∞, we have

avgoutdeg(G(H)) ≤ d. Consider an arbitrary set Vn ⊆ Yn such that

|Vn| <∞ and dim(Vn) ≤ d. If Vn has a pivot, then we have

avgoutdeg(G(Vn)) ≤ d.
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Pivot shifting

For any n ∈ N\{1}, a ∈ Y, and Vn ⊆ Yn with |Vn| <∞, we define

Pa(Vn) := ∪y∈Y

{

(y1, . . . , yn−1) ∈ Yn−1 :(y1, . . . , yn−1, y) ∈ Vn,

(y1, . . . , yn−1, a) /∈ Vn

}

.

For y = (y1, . . . , yn−1) ∈ Pa(Vn) and the edge (en,y, n) in G(Vn), define

Ly := {y ∈ Y : (y1, . . . , yn−1, y) ∈ (en,y, n)}.

A mapping γ : Pa(Vn)→ Y is called a pivot shifting on Vn to a if γ(y) ∈ Ly

for all y ∈ Pa(Vn).
Let Γa,Vn denote the set of all pivot shifting on Vn to a. For any γ ∈ Γa,Vn ,
we define

V γ
n := (Vn\ {(y, γ(y)) : y ∈ Pa(Vn)}) ∪ {(y, a) : y ∈ Pa(Vn)} ;

i.e., Vn,γ is obtained by replacing the label γ(y) in (y, γ(y)) with a for all

y ∈ Pa(Vn).
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Pivot shifting

• Lemma 3.8. For any a ∈ Y, V ⊆ ∪∞n=2Yn with |V | <∞,
and γ ∈ Γa,V , we have

avgoutdeg(G(V γ)) ≥ avgoutdeg(G(V )).

• Open Question 2. For any d ∈ N and any V ⊆ ∪∞n=d+2Yn

with |V | <∞ and dim(V ) = d, are there some a ∈ Y and
γ ∈ Γa,V such that dim(V γ) ≤ d?

• A positive resolution of the above question would lead to the
conclusion that µH ≤ 2dim(H).
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Thank You!
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