

Kiel University Christian-Albrechts-Universität zu Kiel

Vision Transformers are NOT flexible!

ViTs offer different variants

- High hardware demand due to large attention matrices in MHA.
- ViTs provide multiple variants with different hardware demands.

	ViT-Ti	ViT-S	ViT-B
# Layers	12	12	12
Dim	192	384	768
# Heads	3	6	12
Dim per Head	64	64	64
# Params	5.7 M	22 M	86 M

Limitations of ViT's variants

- Each must be individually trained, tuned, and stored.
- The number of configurations is limited, offering only a few options.

Observation

• The variants share the same architecture, differing only in the number of attention heads and embedding sizes, i.e., VIT-TI \subseteq VIT-S \subseteq VIT-B.

Number of heads (embedding dim)

HydraViT: One model, many configurations

Train a **single universal ViT model** adaptable to diverse hardware:

• In each iteration, we train a randomly sampled subnetwork corresponding to the first k heads, including the associated weights in MLP, Norm, and Patch Embedding layers.

Result:

- **Initial heads** are involved more in training \rightarrow more important.
- **Later heads** are involved less in training \rightarrow less important.

HydraViT: Stacking Heads for a Scalable ViT

Janek Haberer*, Ali Hojjat*, Olaf Landsiedel *Equal contribution

Sort Heads, Scale Anywhere!

TLDR: By sorting attention heads during training, we enable flexible inference that adapts to diverse hardware constraints by dropping the least important heads.

How do we extract subnetworks?

Results

• HydraViT outperforms baselines by up to 7 p.p. at the same throughput.

The accuracy of HydraViT with our different design choices.

Weighted Sampling?	Separate Classifiers?	Epochs	Acc [%] 3 Heads	Acc [%] 6 Heads	Acc [%] 12 Heads
×	×	300	72.56	79.35	80.63
×	×	400	73.16	79.63	80.90
×	×	500	73.54	80.09	81.30
1	×	300	72.02	79.35	80.98
1	×	400	72.45	79.85	81.49
\checkmark	×	500	72.50	79.89	81.63
×	✓	300	72.78	79.44	80.52
×	\checkmark	400	73.24	79.88	81.13
×	\checkmark	500	73.42	80.12	81.13
1	✓	300	72.13	79.45	81.18
1	\checkmark	400	72.46	79.93	81.58
\checkmark	\checkmark	500	72.65	80.08	81.77
DeiT-tiny/small/base		72.2	79.9	81.8	

