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  Introduction

We present a theoretical framework and provide new insight on the research 
question: 
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  An Illustrative Example

  Experiments

GRASP also applys to other score functions
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In this paper, we study Score Propagation in the Graph Out-of-Distribution 
problem.

“when does Score Propagation help  
detect graph OOD nodes and how to improve it?” 

Observation: Score Propagation mail fail when inter-edges 
dominate!

Augmentated Score Propagation

Main Results
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Post-
propagation
OOD Score  

1. Shall we 
propagate?

2. How to 
improve it?

Propagation

ID OOD

…

(a) The case when propagation is harmful. 

(b) The case when propagation is helpful. 

  Theoretical Findings

articulate this relationship, we adopt a probabilistic framework for modeling edges. Specifically, we
assume that the edge follows a Bernoulli distribution characterized by parameters ωintra and ωinter

for intra-edges (ID-to-ID and OOD-to-OOD) and inter-edges (ID-to-OOD), respectively:

Aij →

{
Ber(ωintra), if i, j ↑ Vuid or i, j ↑ Vuood

Ber(ωinter), if i ↑ Vuid, j ↑ Vuood or j ↑ Vuid, i ↑ Vuood

In the context of probabilistic modeling, the subsequent Theorem 3.1 can be established to formalize
the inherent understanding.

Theorem 3.1. (Informal) (a) When ωintra ↓ ωinter, it is highly likely that the propagation
algorithm will yield enhanced performance in OOD detection. (b) When ωintra ↔ ωinter or
even ωintra < ωinter, the score propagation is likely to be either ineffective or detrimental to
the performance.

We also provide the formal version below (Theorem 3.2) which provides a mathematical foundation
for understanding how varying the Bernoulli parameters influence the efficacy of the propagation in
the context of OOD detection. We provide the detailed proof in Appendix A.

Theorem 3.2. (Formal) For any two test ID/OOD node set Sid ↗ Vuid, Sood ↗ Vuood with
equal size Ns, let the ID-vs-OOD separability Msep defined on an OOD scoring vector
ĝ ↑ RN as

Msep(ĝ) ↭ Ei→Sid ĝi ↘ Ej→Sood ĝj .

If Msep(ĝ) > 0 and ωintra ↘ ωinter > 1/Ns, for some ε > 0 and constant c, we have
P

(
Msep(Aĝ) ≃ Msep(ĝ) ↘ ε

)
≃ 1 ↘ exp(↘ cω

2

↑ĝ↑2
2
).

Summary. This section has presented a comprehensive theoretical evidence to substantiate the claim
that propagation through the adjacency matrix A does not necessarily enhance out-of-distribution
(OOD) detection in graphs. Moreover, Theorem 3.2 reveals that the critical factor in enhancing
post-propagation performance lies in improving the ratio of intra-edges within the graph structure.
These insights serve as a direct motivation for the augmentation strategy in the next section.

4 An Augmented Score Propagation Strategy

The findings from the preceding section give rise to a subsequent thought: "Can we improve the
propagation strategy for graph OOD detection performance?" In an ideal scenario, if an oracle were
to indicate that a particular subset in the test set belongs exclusively to the ID or OOD, one could
augment the graph by adding intra-edges or removing inter-edges. This would consequently improve
the ratio of intra-edges ωintra, leading to enhanced OOD detection performance post-propagation.

However, such an oracle does not exist in practical settings, and even approximating such a subset
proves to be a difficult task. Existing literature has suggested the use of pseudo-labels assigned to
nodes [36, 79, 2, 73, 55]. Nonetheless, these studies also caution that this approach is susceptible to
“confirmation bias", whereby errors in estimation are inadvertently amplified.

To circumvent it, this paper proposes the solution for adding edges to a subset of the training set
Vl, which is assured to be in-distribution data. We start by showing the theoretical underpinnings
that adding such a subset can, under specified conditions, contribute to improved OOD detection
performance after propagation.

4.1 Theoretical Insight

Our approach involves adding the edges to a subset G of training data and then propagating the
out-of-distribution (OOD) scoring vector using the enhanced adjacency matrix. Specifically, when
edges are added to G, this action can be mathematically represented as incorporating a perturbation
matrix E = eGe↓

G
into A, as demonstrated in Figure 3. Here, eS ↑ RN denotes an indicator vector

for a set S ↗ V , where the vector takes the value of 1 if the index i ↑ S and value 0 otherwise. A
sufficient condition for the efficacy of this augmentation strategy in enhancing post-propagation OOD
detection performance is outlined in Theorem 4.1.
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Finding 1: Score Propagation only works when intra-edges dominate 

Figure 3: The augmentation procedure.

Theorem 4.1. (Informal) For a subset G in the training set, augmenting G by adding edges
to all its nodes can lead to improved post-propagation OOD detection performance, provided
that the following condition is met: G has more edges to ID data than OOD data.

We also provide the formal version below (Theorem 4.2) that incorporates a perturbation analysis.
This analysis elucidates how edge augmentation in the training set can positively influence the
propagation algorithm’s ability to enhance OOD detection. For the sake of the main intuition, we
provide the analysis on A instead of Ā for simplicity. We provide the detailed proof in Appendix A.

Theorem 4.2. (Formal) For any two test ID/OOD node set Sid → Vuid, Sood → Vuood with
size Ns, let the ID-vs-OOD separability Msep defined on a non-negative OOD scoring vector
ĝ ↑ RN as

Msep(ĝ) ↭ Ei→Sid ĝi ↓ Ej→Sood ĝj .

Let ES↑S→ → E to denote the edge set of edges between two node sets S and S↓, where
S, S↓

→ V . If we can find a node set G → Vl such that |EG↑Sid | > |EG↑Sood |, we have

Msep((A + ωE)2ĝ) > Msep(A
2ĝ),

where E = eGe↔
G

and ω > 0.

The Theorem 4.2 shows a critical principle for enhancing propagation: the optimal strategy entails
the addition of edges to the subset G such that there are more edges to ID data than OOD data. For
some Sid, Sood in the test set, the goal is to find the set

G↗ = arg max
S↘Vl,|S|=Ng

|ES↑Sid |

|ES↑Sood |
, (2)

where Ng is a hyperparameter to control the size of G↗. Inspired by the optimization target, we
proceed to present our pragmatic algorithmic approach.

4.2 Graph-Augmented Score Propagation (GRASP)

Our augmentation approach hinges on the selection of a subset, G, from the training set, as exemplified
in Equation 2. Two principal challenges arise in implementing this: (1) We cannot directly determine
the number of edges linked to ID/OOD data because these reside in the test set and their labels remain
unknown. (2) An exhaustive search to find a subset is computationally expensive, as the number of
combinatorial possibilities increases in a factorial manner. In this paper, we tackle these challenges
by providing the practical approximation method.

Selection of Sid/Sood. Our discussion begins by detailing the methodology to select the subset from
the test ID/OOD dataset, symbolized by Sid and Sood in Equation 2. A straightforward approach to
obtain the most likely ID is by selecting nodes with the largest confidence and the least for OOD in
class predictions. Following [23], we employ the max softmax probability (MSP) as a representation
of confidence. The selected sets can be defined as:

Sid = {i ↑ Vu| max
c→[C]

fc(i) > εω}, Sood = {j ↑ Vu| max
c→[C]

fc(j) < ε100≃ω, (3)

where εω denotes the ϑ-th percentile of the MSP scores corresponding to nodes in Vu. To offer a
clear view, Figure 4 portrays Sid and Sood in the marginal regions highlighted in orange. Selecting a
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Case 2: Score Propagation (with More Intra-edges)
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Finding 2: Score Propagation along augmentated graph by adding edges  
within G can boost OOD detection performance 

  Methodology
Selection of G 

OOD 
ID

<latexit sha1_base64="+IaJekvKBFcZ7jlNAC0DEe17Rh8=">AAAB+3icbVDLSsNAFJ3UV62vWJduBovgxpJIUZdFNy4r2Ac0IdxMJu3QyYOZiVhCfsWNC0Xc+iPu/BunbRbaemDgcM653DvHTzmTyrK+jcra+sbmVnW7trO7t39gHtZ7MskEoV2S8EQMfJCUs5h2FVOcDlJBIfI57fuT25nff6RCsiR+UNOUuhGMYhYyAkpLnll3uA4H4OX2uQM8HUPhmQ2rac2BV4ldkgYq0fHMLydISBbRWBEOUg5tK1VuDkIxwmlRczJJUyATGNGhpjFEVLr5/PYCn2olwGEi9IsVnqu/J3KIpJxGvk5GoMZy2ZuJ/3nDTIXXbs7iNFM0JotFYcaxSvCsCBwwQYniU02ACKZvxWQMAojSddV0Cfbyl1dJ76JpXzZb961G+6aso4qO0Qk6Qza6Qm10hzqoiwh6Qs/oFb0ZhfFivBsfi2jFKGeO0B8Ynz+zAJQ8</latexit>

�1�↵
<latexit sha1_base64="xioNot9BsEvJvD+Dq02YCtkKo0M=">AAAB+XicbVDLSsNAFJ3UV62vqEs3g0VwVRIp6rLoxmUF+4AmhJvJpB06mYSZSaGE/okbF4q49U/c+TdO2yy09cDA4ZxzuXdOmHGmtON8W5WNza3tnepubW//4PDIPj7pqjSXhHZIylPZD0FRzgTtaKY57WeSQhJy2gvH93O/N6FSsVQ86WlG/QSGgsWMgDZSYNseN+EIgsIDno1gFth1p+EsgNeJW5I6KtEO7C8vSkmeUKEJB6UGrpNpvwCpGeF0VvNyRTMgYxjSgaECEqr8YnH5DF8YJcJxKs0TGi/U3xMFJEpNk9AkE9AjterNxf+8Qa7jW79gIss1FWS5KM451ime14AjJinRfGoIEMnMrZiMQALRpqyaKcFd/fI66V413OtG87FZb92VdVTRGTpHl8hFN6iFHlAbdRBBE/SMXtGbVVgv1rv1sYxWrHLmFP2B9fkD0ESTyg==</latexit>

�↵

<latexit sha1_base64="IilAw/j9/uYAqyvrVBpk0oWOEVk=">AAAB7XicbVBNSwMxEJ2tX7V+VT16CRbBU9mVUj0WvXisaD+gXUo2m21js8mSZIWy9D948aCIV/+PN/+NabsHbX0w8Hhvhpl5QcKZNq777RTW1jc2t4rbpZ3dvf2D8uFRW8tUEdoikkvVDbCmnAnaMsxw2k0UxXHAaScY38z8zhNVmknxYCYJ9WM8FCxiBBsrte8HGQung3LFrbpzoFXi5aQCOZqD8lc/lCSNqTCEY617npsYP8PKMMLptNRPNU0wGeMh7VkqcEy1n82vnaIzq4QoksqWMGiu/p7IcKz1JA5sZ4zNSC97M/E/r5ea6MrPmEhSQwVZLIpSjoxEs9dRyBQlhk8swUQxeysiI6wwMTagkg3BW355lbQvql69WrurVRrXeRxFOIFTOAcPLqEBt9CEFhB4hGd4hTdHOi/Ou/OxaC04+cwx/IHz+QOuKY82</latexit>

Sid
<latexit sha1_base64="e98E+qt/7Rlq9ps/CSNvrDvWJlE=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeiF48V7Qe0oWw2m3bpZjfsboQS+iO8eFDEq7/Hm//GbZqDtj4YeLw3w8y8IOFMG9f9dkpr6xubW+Xtys7u3v5B9fCoo2WqCG0TyaXqBVhTzgRtG2Y47SWK4jjgtBtMbud+94kqzaR4NNOE+jEeCRYxgo2Vug/DTMpwNqzW3LqbA60SryA1KNAaVr8GoSRpTIUhHGvd99zE+BlWhhFOZ5VBqmmCyQSPaN9SgWOq/Sw/d4bOrBKiSCpbwqBc/T2R4VjraRzYzhibsV725uJ/Xj810bWfMZGkhgqyWBSlHBmJ5r+jkClKDJ9agoli9lZExlhhYmxCFRuCt/zyKulc1L3LeuO+UWveFHGU4QRO4Rw8uIIm3EEL2kBgAs/wCm9O4rw4787HorXkFDPH8AfO5w+HAI+1</latexit>

Sood

Fr
eq

ue
nc

y 

Max Softmax Probability

Distribution of MSP Score in 
<latexit sha1_base64="kQKSi1vkHLUzP2zdWHB65IPIY0M=">AAAB9HicbVDLSgMxFL1TX7W+qi7dBIvgqsyIqMuiG5cV7APaodxJ0zY0kxmTTKEM/Q43LhRx68e482/MtLPQ1gOBwzn3ck9OEAuujet+O4W19Y3NreJ2aWd3b/+gfHjU1FGiKGvQSESqHaBmgkvWMNwI1o4VwzAQrBWM7zK/NWFK80g+mmnM/BCHkg84RWMlvxuiGVEUaXPWS3rlilt15yCrxMtJBXLUe+Wvbj+iScikoQK17nhubPwUleFUsFmpm2gWIx3jkHUslRgy7afz0DNyZpU+GUTKPmnIXP29kWKo9TQM7GQWUi97mfif10nM4MZPuYwTwyRdHBokgpiIZA2QPleMGjG1BKniNiuhI1RIje2pZEvwlr+8SpoXVe+qevlwWand5nUU4QRO4Rw8uIYa3EMdGkDhCZ7hFd6cifPivDsfi9GCk+8cwx84nz8n7JJd</latexit>Vu Step 1: Selection of Sid and Sood

…

……
1

1

<latexit sha1_base64="S2gUnD3n5H7zQ610Z5P4adhD600=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPaUDbbSbt0swm7m0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3xqg0j+WTmSToR3QgecgZNVZ6HPe8XrniVt05yCrxclKBHPVe+avbj1kaoTRMUK07npsYP6PKcCZwWuqmGhPKRnSAHUsljVD72fzUKTmzSp+EsbIlDZmrvycyGmk9iQLbGVEz1MveTPzP66QmvPEzLpPUoGSLRWEqiInJ7G/S5wqZERNLKFPc3krYkCrKjE2nZEPwll9eJc2LqndV9R4uK7XbPI4inMApnIMH11CDe6hDAxgM4Ble4c0Rzovz7nwsWgtOPnMMf+B8/gAKnI2k</latexit>v1
<latexit sha1_base64="QpDMvqMuPU75GXzQ0xQDGkNsYnI=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Vj04rGi/YA2lM120i7dbMLuplBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0N/NbY1Sax/LJTBL0IzqQPOSMGis9jnvVXqnsVtw5yCrxclKGHPVe6avbj1kaoTRMUK07npsYP6PKcCZwWuymGhPKRnSAHUsljVD72fzUKTm3Sp+EsbIlDZmrvycyGmk9iQLbGVEz1MveTPzP66QmvPEzLpPUoGSLRWEqiInJ7G/S5wqZERNLKFPc3krYkCrKjE2naEPwll9eJc1qxbuqeA+X5dptHkcBTuEMLsCDa6jBPdShAQwG8Ayv8OYI58V5dz4WrWtOPnMCf+B8/gAMII2l</latexit>v2

<latexit sha1_base64="s9Nr88TAL3Cj6CHdeWFnYETDvrA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbTbt0swm7k0IJ/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSKQw6LpfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj25nfGnNtRKwecZJwP6IDJULBKFrpYdw775UrbtWdg/wlXk4qkKPeK392+zFLI66QSWpMx3MT9DOqUTDJp6VuanhC2YgOeMdSRSNu/Gx+6pScWKVPwljbUkjm6s+JjEbGTKLAdkYUh2bZm4n/eZ0Uw2s/EypJkSu2WBSmkmBMZn+TvtCcoZxYQpkW9lbChlRThjadkg3BW375L2meVb3Lqnd/Uand5HEU4QiO4RQ8uIIa3EEdGsBgAE/wAq+OdJ6dN+d90Vpw8plD+AXn4xsNpI2m</latexit>v3
<latexit sha1_base64="hQcXFa7YhHjsPD8Clo9aXL3DkT8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRiyepaD+gDWWz3bRLN5uwOymU0J/gxYMiXv1F3vw3btsctPpg4PHeDDPzgkQKg6775RRWVtfWN4qbpa3tnd298v5B08SpZrzBYhnrdkANl0LxBgqUvJ1oTqNA8lYwupn5rTHXRsTqEScJ9yM6UCIUjKKVHsa9u1654lbdOchf4uWkAjnqvfJntx+zNOIKmaTGdDw3QT+jGgWTfFrqpoYnlI3ogHcsVTTixs/mp07JiVX6JIy1LYVkrv6cyGhkzCQKbGdEcWiWvZn4n9dJMbzyM6GSFLlii0VhKgnGZPY36QvNGcqJJZRpYW8lbEg1ZWjTKdkQvOWX/5LmWdW7qHr355XadR5HEY7gGE7Bg0uowS3UoQEMBvAEL/DqSOfZeXPeF60FJ585hF9wPr4BNpCNwQ==</latexit>vN

<latexit sha1_base64="EJ8j+WLiKBYhRHse7tmqUC7SKzc=">AAAB6XicbVDLSgNBEOyNrxhfUY9eBoPgKexKUC9C1IvHKOYBSQizk9lkyOzsMtMrhCV/4MWDIl79I2/+jZNkD5pY0FBUddPd5cdSGHTdbye3srq2vpHfLGxt7+zuFfcPGiZKNON1FslIt3xquBSK11Gg5K1Ycxr6kjf90e3Ubz5xbUSkHnEc825IB0oEglG00sP1Va9YcsvuDGSZeBkpQYZar/jV6UcsCblCJqkxbc+NsZtSjYJJPil0EsNjykZ0wNuWKhpy001nl07IiVX6JIi0LYVkpv6eSGlozDj0bWdIcWgWvan4n9dOMLjspkLFCXLF5ouCRBKMyPRt0heaM5RjSyjTwt5K2JBqytCGU7AheIsvL5PGWdk7L1fuK6XqTRZHHo7gGE7Bgwuowh3UoA4MAniGV3hzRs6L8+58zFtzTjZzCH/gfP4AF3ONFQ==</latexit>

A =

1 1 …
1 1

……
1

1

<latexit sha1_base64="S2gUnD3n5H7zQ610Z5P4adhD600=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRi8eK9gPaUDbbSbt0swm7m0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU1HGqGDZYLGLVDqhGwSU2DDcC24lCGgUCW8Hobua3xqg0j+WTmSToR3QgecgZNVZ6HPe8XrniVt05yCrxclKBHPVe+avbj1kaoTRMUK07npsYP6PKcCZwWuqmGhPKRnSAHUsljVD72fzUKTmzSp+EsbIlDZmrvycyGmk9iQLbGVEz1MveTPzP66QmvPEzLpPUoGSLRWEqiInJ7G/S5wqZERNLKFPc3krYkCrKjE2nZEPwll9eJc2LqndV9R4uK7XbPI4inMApnIMH11CDe6hDAxgM4Ble4c0Rzovz7nwsWgtOPnMMf+B8/gAKnI2k</latexit>v1
<latexit sha1_base64="QpDMvqMuPU75GXzQ0xQDGkNsYnI=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkR9Vj04rGi/YA2lM120i7dbMLuplBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6jhVDBssFrFqB1Sj4BIbhhuB7UQhjQKBrWB0N/NbY1Sax/LJTBL0IzqQPOSMGis9jnvVXqnsVtw5yCrxclKGHPVe6avbj1kaoTRMUK07npsYP6PKcCZwWuymGhPKRnSAHUsljVD72fzUKTm3Sp+EsbIlDZmrvycyGmk9iQLbGVEz1MveTPzP66QmvPEzLpPUoGSLRWEqiInJ7G/S5wqZERNLKFPc3krYkCrKjE2naEPwll9eJc1qxbuqeA+X5dptHkcBTuEMLsCDa6jBPdShAQwG8Ayv8OYI58V5dz4WrWtOPnMCf+B8/gAMII2l</latexit>v2

<latexit sha1_base64="s9Nr88TAL3Cj6CHdeWFnYETDvrA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lU1GPRi8eK9gPaUDbbTbt0swm7k0IJ/QlePCji1V/kzX/jts1Bqw8GHu/NMDMvSKQw6LpfTmFldW19o7hZ2tre2d0r7x80TZxqxhsslrFuB9RwKRRvoEDJ24nmNAokbwWj25nfGnNtRKwecZJwP6IDJULBKFrpYdw775UrbtWdg/wlXk4qkKPeK392+zFLI66QSWpMx3MT9DOqUTDJp6VuanhC2YgOeMdSRSNu/Gx+6pScWKVPwljbUkjm6s+JjEbGTKLAdkYUh2bZm4n/eZ0Uw2s/EypJkSu2WBSmkmBMZn+TvtCcoZxYQpkW9lbChlRThjadkg3BW375L2meVb3Lqnd/Uand5HEU4QiO4RQ8uIIa3EEdGsBgAE/wAq+OdJ6dN+d90Vpw8plD+AXn4xsNpI2m</latexit>v3
<latexit sha1_base64="hQcXFa7YhHjsPD8Clo9aXL3DkT8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lE1GPRiyepaD+gDWWz3bRLN5uwOymU0J/gxYMiXv1F3vw3btsctPpg4PHeDDPzgkQKg6775RRWVtfWN4qbpa3tnd298v5B08SpZrzBYhnrdkANl0LxBgqUvJ1oTqNA8lYwupn5rTHXRsTqEScJ9yM6UCIUjKKVHsa9u1654lbdOchf4uWkAjnqvfJntx+zNOIKmaTGdDw3QT+jGgWTfFrqpoYnlI3ogHcsVTTixs/mp07JiVX6JIy1LYVkrv6cyGhkzCQKbGdEcWiWvZn4n9dJMbzyM6GSFLlii0VhKgnGZPY36QvNGcqJJZRpYW8lbEg1ZWjTKdkQvOWX/5LmWdW7qHr355XadR5HEY7gGE7Bg0uowS3UoQEMBvAEL/DqSOfZeXPeF60FJ585hF9wPr4BNpCNwQ==</latexit>vN

Add 
edges to 

<latexit sha1_base64="TG3hE3CynE4ik7XR82SB/jAm2FQ=">AAAB+XicbVDLSsNAFL2pr1pfUZduBovgQkpSiroRii50WcE+oAlhMp20QycPZiaBEvonblwo4tY/ceffOG2z0NYDFw7n3Mu99/gJZ1JZ1rdRWlvf2Nwqb1d2dvf2D8zDo46MU0Fom8Q8Fj0fS8pZRNuKKU57iaA49Dnt+uO7md/NqJAsjp7UJKFuiIcRCxjBSkuead6jG+TkmWdfoMyrO1PPrFo1aw60SuyCVKFAyzO/nEFM0pBGinAsZd+2EuXmWChGOJ1WnFTSBJMxHtK+phEOqXTz+eVTdKaVAQpioStSaK7+nshxKOUk9HVniNVILnsz8T+vn6rg2s1ZlKSKRmSxKEg5UjGaxYAGTFCi+EQTTATTtyIywgITpcOq6BDs5ZdXSadesy9rjcdGtXlbxFGGEziFc7DhCprwAC1oA4EMnuEV3ozceDHejY9Fa8koZo7hD4zPHz2pkiE=</latexit>

G = {v1, v2}

<latexit sha1_base64="sxhrtqlJFrvCaQX4o+BHfbB9UbA=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgKexKUI9BETwmYB6QLGF20puMmZ1dZmaFEPIFXjwo4tVP8ubfOEn2oIkFDUVVN91dQSK4Nq777eTW1jc2t/LbhZ3dvf2D4uFRU8epYthgsYhVO6AaBZfYMNwIbCcKaRQIbAWj25nfekKleSwfzDhBP6IDyUPOqLFS/a5XLLlldw6ySryMlCBDrVf86vZjlkYoDRNU647nJsafUGU4EzgtdFONCWUjOsCOpZJGqP3J/NApObNKn4SxsiUNmau/JyY00nocBbYzomaol72Z+J/XSU147U+4TFKDki0WhakgJiazr0mfK2RGjC2hTHF7K2FDqigzNpuCDcFbfnmVNC/K3mW5Uq+UqjdZHHk4gVM4Bw+uoAr3UIMGMEB4hld4cx6dF+fd+Vi05pxs5hj+wPn8AZvbjNI=</latexit>

E

Step 2: Selection of G

some Sid, Sood in the test set, the goal is to find the set164

G→ = arg max
S↑Vl,|S|=Ng

|ES↓Sid |

|ES↓Sood |
, (2)

where Ng is a hyperparameter to control the size of G→. Inspired by the optimization target, we165

proceed to present our pragmatic algorithmic approach.166

4.2 Graph-Augmented Score Propagation (GRASP)167

Our augmentation approach hinges on the selection of a subset, G, from the training set, as exemplified168

in Equation 2. Two principal challenges arise in implementing this: (1) We cannot directly determine169

the number of edges linked to ID/OOD data because these reside in the test set and their labels remain170

unknown. (2) An exhaustive search to find a subset is computationally expensive, as the number of171

combinatorial possibilities increases in a factorial manner. In this paper, we tackle these challenges172

by providing the practical approximation method.173

Selection of Sid/Sood. Our discussion begins by detailing the methodology to select the subset from174

the test ID/OOD dataset, symbolized by Sid and Sood in Equation 2. A straightforward approach to175

obtain the most likely ID is by selecting nodes with the largest confidence and the least for OOD in176

class predictions. Following [21], we employ the max softmax probability (MSP) as a representation177

of confidence. The selected sets can be defined as:178

Sid = {i → Vu| max
c↔[C]

fc(i) > ωω}, Sood = {j → Vu| max
c↔[C]

fc(j) < ω100↗ω, (3)

where ωω denotes the ε-th percentile of the MSP scores corresponding to nodes in Vu. To offer a179

Figure 4: Illustration of the ra-
tionale in selecting Sid and Sood.
MSP score is reported on Dataset
Coauther-CS with the division of
ID and OOD classes introduced in
Appendix C.

clear view, Figure 4 portrays Sid and Sood in the marginal180

regions highlighted in orange. Selecting a subset in the left-181

most and rightmost regions reduces the error when identifying182

the ID/OOD subsets, given that overlapping between ID and183

OOD predominantly occurs around the central region of the184

distribution.185

Selection of G. Upon establishing Sid and Sood, the next step186

is to determine G using Equation 2. Directly enumerating every187

possible G is impractical. Instead, we adopt a greedy approach,188

prioritizing the node with the highest "likelihood" score. To189

elucidate, for each node i → Vl, the score can be computed as190

the ratio of the edge count to Sid over Sood:191

h(i) = |E{i}↓Sid
|/(|E{i}↓Sood

| + 1), (4)

where we incorporate an addition of 1 in the denominator to192

circumvent division by zero. Subsequently, G can be expressed193

as:194

G = {i → Vl|h(i) > ϑε}, (5)
where ϑε stands for the ϖ-th percentile of h(i) scores for nodes in Vl. Once G is defined, edge195

augmentation can be executed as demonstrated in Section 4.1. The OOD score is then propagated196

with the new adjacency matrix A+ = A + eGe↘
G

in place:197

gGRASP = (Ā+)kĝ, (6)

where k → N+ are hyperparameters.198

Complexity analysis. Our method can be effciently implemented by matrix-vector multiplication,199

leading to computational footprint in terms of runtime and memory usage with O(N + 2k|E| + n)200

and O(N + k|E| + n) respectively after propagation for k times, where n is node count of subset G.201

We provide the comprehensive complexity analysis in Appendix D.5.202
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Figure 3: The augmentation procedure.

Theorem 4.1. (Informal) For a subset G in the training set, augmenting G by adding edges
to all its nodes can lead to improved post-propagation OOD detection performance, provided
that the following condition is met: G has more edges to ID data than OOD data.

We also provide the formal version below (Theorem 4.2) that incorporates a perturbation analysis.
This analysis elucidates how edge augmentation in the training set can positively influence the
propagation algorithm’s ability to enhance OOD detection. For the sake of the main intuition, we
provide the analysis on A instead of Ā for simplicity. We provide the detailed proof in Appendix A.

Theorem 4.2. (Formal) For any two test ID/OOD node set Sid → Vuid, Sood → Vuood with
size Ns, let the ID-vs-OOD separability Msep defined on a non-negative OOD scoring vector
ĝ ↑ RN as

Msep(ĝ) ↭ Ei→Sid ĝi ↓ Ej→Sood ĝj .

Let ES↑S→ → E to denote the edge set of edges between two node sets S and S↓, where
S, S↓

→ V . If we can find a node set G → Vl such that |EG↑Sid | > |EG↑Sood |, we have

Msep((A + ωE)2ĝ) > Msep(A
2ĝ),

where E = eGe↔
G

and ω > 0.

The Theorem 4.2 shows a critical principle for enhancing propagation: the optimal strategy entails
the addition of edges to the subset G such that there are more edges to ID data than OOD data. For
some Sid, Sood in the test set, the goal is to find the set

G↗ = arg max
S↘Vl,|S|=Ng

|ES↑Sid |

|ES↑Sood |
, (2)

where Ng is a hyperparameter to control the size of G↗. Inspired by the optimization target, we
proceed to present our pragmatic algorithmic approach.

4.2 Graph-Augmented Score Propagation (GRASP)

Our augmentation approach hinges on the selection of a subset, G, from the training set, as exemplified
in Equation 2. Two principal challenges arise in implementing this: (1) We cannot directly determine
the number of edges linked to ID/OOD data because these reside in the test set and their labels remain
unknown. (2) An exhaustive search to find a subset is computationally expensive, as the number of
combinatorial possibilities increases in a factorial manner. In this paper, we tackle these challenges
by providing the practical approximation method.

Selection of Sid/Sood. Our discussion begins by detailing the methodology to select the subset from
the test ID/OOD dataset, symbolized by Sid and Sood in Equation 2. A straightforward approach to
obtain the most likely ID is by selecting nodes with the largest confidence and the least for OOD in
class predictions. Following [23], we employ the max softmax probability (MSP) as a representation
of confidence. The selected sets can be defined as:

Sid = {i ↑ Vu| max
c→[C]

fc(i) > εω}, Sood = {j ↑ Vu| max
c→[C]

fc(j) < ε100≃ω, (3)

where εω denotes the ϑ-th percentile of the MSP scores corresponding to nodes in Vu. To offer a
clear view, Figure 4 portrays Sid and Sood in the marginal regions highlighted in orange. Selecting a
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Figure 4: Illustration of the rationale in selecting Sid and Sood. MSP score is reported on Dataset
Coauther-CS with the division of ID and OOD classes introduced in Appendix C.

subset in the leftmost and rightmost regions reduces the error when identifying the ID/OOD subsets,
given that overlapping between ID and OOD predominantly occurs around the central region of the
distribution.

Selection of G. Upon establishing Sid and Sood, the next step is to determine G using Equation 2.
Directly enumerating every possible G is impractical. Instead, we adopt a greedy approach, prioritiz-
ing the node with the highest "likelihood" score. To elucidate, for each node i → Vl, the score can be
computed as the ratio of the edge count to Sid over Sood:

h(i) = |E{i}→Sid
|/(|E{i}→Sood

| + 1), (4)

where we incorporate an addition of 1 in the denominator to circumvent division by zero. Subse-
quently, G can be expressed as:

G = {i → Vl|h(i) > ωω}, (5)
where ωω stands for the ε-th percentile of h(i) scores for nodes in Vl. Once G is defined, edge
augmentation can be executed as demonstrated in Section 4.1. The OOD score is then propagated
with the new adjacency matrix A+ = A + eGe↑

G
in place:

gGRASP = (Ā+)kĝ, (6)

where k → N+ are hyperparameters.

Complexity analysis. While our algorithm introduces the fully connected matrix E, our method
can be effciently implemented by matrix-vector multiplication, leading to computational footprint
in terms of runtime and memory usage with O(N + 2k|E| + n) and O(N + |E| + n) respectively
after propagation for k times, where n is node count of subset G. We provide the comprehensive
complexity analysis in Appendix D.6.

5 Experiments

Table 1: Summary statistics of the datasets: size of
the training set |Vl|, test ID set |Vuid|, test OOD set
|Vuood|; number of ID classes C, scale of the dataset,
and whether the graph is homophily.

Dataset |Vl| |Vuid| |Vuood| C Scale Homph

Cora 180 724 18K 3 SM ✁
Amazon-Photo 618 2K 4K 3 SM ✁
Coauthor-CS 2K 10K 5K 11 SM ✁
Chameleon 272 1K 916 3 SM ✂
Squirrel 622 2K 2K 3 SM ✂
Reddit2 33K 133K 65K 11 LG ✁
ogbn-products 130K 522K 1M 11 LG ✁
ArXiv-year 23K 92K 53K 3 LG ✂
Snap-patents 351K 1M 1M 3 LG ✂
Wiki 212K 850K 862K 3 LG ✂

Datasets. We conduct extensive experiments us-
ing 10 real-world datasets that span diverse do-
mains, scales, and structures (homophily or het-
erophily). A high-level summary of the dataset
statistics is provided in Table 1, with a detailed
information of the datasets and the comprehen-
sive description of ID/OOD split in Appendix C.
Specifically, Cora [61] serves as a widely rec-
ognized citation network. Amazon-Photo [52]
represents a co-purchasing network on Amazon.
Coauthor-CS [62] portrays a coauthor network
within the realm of computer science. Moreover,
Chameleon and Squirrel [59] are two notable
Wikipedia networks, predominantly utilized as
heterophilic graph benchmarks. We additionally incorporate 5 large-scale graphs to evaluate our pro-
posed methods: Reddit2 [88] and ogbn-products [24] are large homophily datasets; ArXiv-year,
Snap-patents, and Wiki [44] are recently proposed large-scale heterophily benchmarks.
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Figure 4: Illustration of the rationale in selecting Sid and Sood. MSP score is reported on Dataset
Coauther-CS with the division of ID and OOD classes introduced in Appendix C.

subset in the leftmost and rightmost regions reduces the error when identifying the ID/OOD subsets,
given that overlapping between ID and OOD predominantly occurs around the central region of the
distribution.

Selection of G. Upon establishing Sid and Sood, the next step is to determine G using Equation 2.
Directly enumerating every possible G is impractical. Instead, we adopt a greedy approach, prioritiz-
ing the node with the highest "likelihood" score. To elucidate, for each node i → Vl, the score can be
computed as the ratio of the edge count to Sid over Sood:

h(i) = |E{i}→Sid
|/(|E{i}→Sood

| + 1), (4)

where we incorporate an addition of 1 in the denominator to circumvent division by zero. Subse-
quently, G can be expressed as:

G = {i → Vl|h(i) > ωω}, (5)
where ωω stands for the ε-th percentile of h(i) scores for nodes in Vl. Once G is defined, edge
augmentation can be executed as demonstrated in Section 4.1. The OOD score is then propagated
with the new adjacency matrix A+ = A + eGe↑

G
in place:

gGRASP = (Ā+)kĝ, (6)

where k → N+ are hyperparameters.

Complexity analysis. While our algorithm introduces the fully connected matrix E, our method
can be effciently implemented by matrix-vector multiplication, leading to computational footprint
in terms of runtime and memory usage with O(N + 2k|E| + n) and O(N + |E| + n) respectively
after propagation for k times, where n is node count of subset G. We provide the comprehensive
complexity analysis in Appendix D.6.
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|Vuood|; number of ID classes C, scale of the dataset,
and whether the graph is homophily.

Dataset |Vl| |Vuid| |Vuood| C Scale Homph

Cora 180 724 18K 3 SM ✁
Amazon-Photo 618 2K 4K 3 SM ✁
Coauthor-CS 2K 10K 5K 11 SM ✁
Chameleon 272 1K 916 3 SM ✂
Squirrel 622 2K 2K 3 SM ✂
Reddit2 33K 133K 65K 11 LG ✁
ogbn-products 130K 522K 1M 11 LG ✁
ArXiv-year 23K 92K 53K 3 LG ✂
Snap-patents 351K 1M 1M 3 LG ✂
Wiki 212K 850K 862K 3 LG ✂

Datasets. We conduct extensive experiments us-
ing 10 real-world datasets that span diverse do-
mains, scales, and structures (homophily or het-
erophily). A high-level summary of the dataset
statistics is provided in Table 1, with a detailed
information of the datasets and the comprehen-
sive description of ID/OOD split in Appendix C.
Specifically, Cora [61] serves as a widely rec-
ognized citation network. Amazon-Photo [52]
represents a co-purchasing network on Amazon.
Coauthor-CS [62] portrays a coauthor network
within the realm of computer science. Moreover,
Chameleon and Squirrel [59] are two notable
Wikipedia networks, predominantly utilized as
heterophilic graph benchmarks. We additionally incorporate 5 large-scale graphs to evaluate our pro-
posed methods: Reddit2 [88] and ogbn-products [24] are large homophily datasets; ArXiv-year,
Snap-patents, and Wiki [44] are recently proposed large-scale heterophily benchmarks.

6

G are the nodes on 
the right of the axis 

Step 3: Add edges within G

Step 4: Score Propagation  
along augmentated graph

Figure 4: Illustration of the rationale in selecting Sid and Sood. MSP score is reported on Dataset
Coauther-CS with the division of ID and OOD classes introduced in Appendix C.

subset in the leftmost and rightmost regions reduces the error when identifying the ID/OOD subsets,
given that overlapping between ID and OOD predominantly occurs around the central region of the
distribution.

Selection of G. Upon establishing Sid and Sood, the next step is to determine G using Equation 2.
Directly enumerating every possible G is impractical. Instead, we adopt a greedy approach, prioritiz-
ing the node with the highest "likelihood" score. To elucidate, for each node i → Vl, the score can be
computed as the ratio of the edge count to Sid over Sood:

h(i) = |E{i}→Sid
|/(|E{i}→Sood

| + 1), (4)

where we incorporate an addition of 1 in the denominator to circumvent division by zero. Subse-
quently, G can be expressed as:

G = {i → Vl|h(i) > ωω}, (5)
where ωω stands for the ε-th percentile of h(i) scores for nodes in Vl. Once G is defined, edge
augmentation can be executed as demonstrated in Section 4.1. The OOD score is then propagated
with the new adjacency matrix A+ = A + eGe↑

G
in place:

gGRASP = (Ā+)kĝ, (6)

where k → N+ are hyperparameters.

Complexity analysis. While our algorithm introduces the fully connected matrix E, our method
can be effciently implemented by matrix-vector multiplication, leading to computational footprint
in terms of runtime and memory usage with O(N + 2k|E| + n) and O(N + |E| + n) respectively
after propagation for k times, where n is node count of subset G. We provide the comprehensive
complexity analysis in Appendix D.6.

5 Experiments

Table 1: Summary statistics of the datasets: size of
the training set |Vl|, test ID set |Vuid|, test OOD set
|Vuood|; number of ID classes C, scale of the dataset,
and whether the graph is homophily.

Dataset |Vl| |Vuid| |Vuood| C Scale Homph

Cora 180 724 18K 3 SM ✁
Amazon-Photo 618 2K 4K 3 SM ✁
Coauthor-CS 2K 10K 5K 11 SM ✁
Chameleon 272 1K 916 3 SM ✂
Squirrel 622 2K 2K 3 SM ✂
Reddit2 33K 133K 65K 11 LG ✁
ogbn-products 130K 522K 1M 11 LG ✁
ArXiv-year 23K 92K 53K 3 LG ✂
Snap-patents 351K 1M 1M 3 LG ✂
Wiki 212K 850K 862K 3 LG ✂

Datasets. We conduct extensive experiments us-
ing 10 real-world datasets that span diverse do-
mains, scales, and structures (homophily or het-
erophily). A high-level summary of the dataset
statistics is provided in Table 1, with a detailed
information of the datasets and the comprehen-
sive description of ID/OOD split in Appendix C.
Specifically, Cora [61] serves as a widely rec-
ognized citation network. Amazon-Photo [52]
represents a co-purchasing network on Amazon.
Coauthor-CS [62] portrays a coauthor network
within the realm of computer science. Moreover,
Chameleon and Squirrel [59] are two notable
Wikipedia networks, predominantly utilized as
heterophilic graph benchmarks. We additionally incorporate 5 large-scale graphs to evaluate our pro-
posed methods: Reddit2 [88] and ogbn-products [24] are large homophily datasets; ArXiv-year,
Snap-patents, and Wiki [44] are recently proposed large-scale heterophily benchmarks.
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Table 2: Main results on common benchmarks. Comparison with competitive out-of-distribution detection
methods on pre-trained GCN. We take the average values that are percentages over 5 independently trained
backbones. → (↑) indicates larger (smaller) values are better.

Method
Datasets AverageCora Amazon Coauthor Chameleon Squirrel

FPR→ AUROC↑ FPR→ AUROC↑ FPR→ AUROC↑ FPR→ AUROC↑ FPR→ AUROC↑ FPR→ AUROC↑

MSP 70.86 84.56 49.26 89.34 28.82 94.34 85.70 57.96 94.68 48.51 65.86 74.94
Energy 67.54 85.47 42.13 90.28 20.29 95.67 88.06 59.20 93.98 45.07 62.40 75.14
KNN 90.20 70.94 65.19 84.71 51.24 90.13 93.38 57.90 94.72 54.68 78.95 71.67
ODIN 68.41 84.98 44.06 89.90 22.59 95.27 85.31 57.94 94.17 44.08 62.91 74.43
Mahalanobis 69.68 85.48 96.49 75.58 85.71 84.98 95.55 53.19 94.90 54.99 88.47 70.84
GKDE 63.71 86.27 81.29 77.26 25.48 95.13 92.93 50.14 96.71 49.38 72.02 71.64
GPN 58.45 82.93 72.95 82.63 34.11 93.82 82.25 68.20 95.58 48.38 68.67 75.19
OODGAT 94.59 53.63 71.34 66.95 96.53 52.18 94.43 59.67 95.27 46.13 90.43 55.71
GNNSafe 54.71 87.52 22.39 96.27 16.64 95.82 100.00 50.42 100.00 35.88 58.75 73.18
GRASP (Ours) 29.70 93.50 14.38 96.68 7.84 97.75 66.88 76.93 85.59 61.09 40.88 85.19

Remark on homophily/heterophily. In Table 1, datasets are also categorized based on the attribute of
homophily, denoting the tendency of nodes with the same class to connect. Conversely, the heterophily
graph demonstrates a tendency for nodes of disparate classes to connect. This characteristic not
only presents a challenge for node classification but also for graph OOD detection. The underlying
reason is that the OOD data is from different classes with ID, and heterophily exacerbates the ratio of
inter-edge connections between ID and OOD, which is deemed undesirable for graph OOD detection
according to Theorem 3.2.

Implementation Details. Our graph OOD detection technique operates in a post hoc fashion utilizing
a pre-trained network and so can be used in various pre-trained network seamlessly. We present
results evaluated on Graph Convolutional Network (GCN) [34] in the main paper to save space and
put detailed results of other architectures in Appendix D.3. All pre-trained models possess a layer
depth of 2. With the pre-trained network, we proceed to execute the graph OOD detection. By default,
we report the performance of the augmented propagation (GRASP) on the MSP score [23]. The
compatibility with other OOD scoring functions is also shown in Table 6. We set the propagation
number k as 8, with percentile values ω = 5 and ε = 50. The sensitivity analysis of the hyper-
parameters is included in Appendix D.4.

Metrics. Following the convention in literature [23, 47, 65], we use AUROC and FPR95 as evaluation
metrics for OOD detection.

5.1 Main Results

GRASP consistently achieves superior performance. We provide results of 5 common small-scale
benchmarks and 5 large-scale datasets in Table 2 and Table 3 respectively, wherein only the averaged
results over 5 runs are presented to save space and the detailed results with standard errors of these
two scale datasets are shown in Table 12 and Table 13 respectively. From the results we can see
that our proposed methodology (GRASP) consistently demonstrates promising performance. The
comparative analysis encompasses a broad spectrum of post hoc competitive Out-of-Distribution
(OOD) detection techniques in existing literature and training-based methods tailored for graph
OOD detection. We categorize the baseline methods into two groups: (a) Traditional OOD detection
methods including MSP [23], Energy [47], ODIN [43], Mahalanobis [37], and KNN [67]; (b) Graph
OOD detection methods including GKDE [92], GPN [64], OODGAT [63], and GNNSafe [77]. In these
tables, we present GRASP results based on the MSP score. Noteworthy findings include: (a) The
traditional OOD detection methods exhibit suboptimal performance in the realm of graph OOD
detection. For instance, GRASP reduced the average FPR95 by 17.87% and 32.21% compared to the
strongest traditional OOD detection method GNNSafe and Mahalanobis on common and large-scale
benchmarks, respectively. This outcome is anticipated given their lack of specificity in design towards
graph data. (b) GRASP outperforms existing baselines by a large margin, surpassing the best baseline
GNNSafe by 17.87% and 40% concerning average FPR95 on two scale benchmarks respectively.
These results further corroborate that the theoretically motivated solution GRASP is also appealing to
use in practice.

GRASP is also competitive on large-scale graph datasets. Contrasted with the small-scale
benchmarks in Table 2, the large-scale scenario in Table 3 presents more challenges due to a large
number of nodes and edges. From Table 3 we can see that all baseline OOD detection methodologies
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Table 3: Main results on large-scale benchmarks. Comparison with competitive out-of-distribution detection
methods on pre-trained method GCN. We take the average values that are percentages over 5 independently
trained backbones. OOM means Out-Of-Memory and OOT denotes that no results have been got after running
over 48 hours for each run. → (↑) indicates larger (smaller) values are better.

Method
Datasets Averagereddit2 ogbn-products arxiv-year snap-patents wiki

FPR→ AUROC↑ FPR→ AUROC↑ FPR→ AUROC↑ FPR→ AUROC↑ FPR→ AUROC↑ FPR→ AUROC↑

MSP 96.59 46.61 86.87 70.19 95.03 47.24 94.31 46.99 95.46 54.70 93.65 53.15
Energy 96.77 44.13 85.09 68.13 94.10 51.35 96.82 46.03 97.31 29.02 94.02 47.73
KNN 90.78 66.74 84.22 73.58 95.35 57.96 90.54 53.45 93.43 43.69 90.86 59.08
ODIN 96.74 44.69 85.65 68.95 95.06 47.36 94.27 45.20 97.88 29.91 93.92 47.22
Mahalanobis 71.73 74.89 OOM OOM 88.60 59.57 96.03 58.50 72.33 67.95 82.17 65.23
GKDE OOT OOT OOM OOM OOM OOM OOM OOM OOM OOM - -
GPN OOM OOM OOM OOM 95.62 50.97 OOM OOM OOM OOM 95.62 50.97
OODGAT OOM OOM OOM OOM 92.90 59.38 OOM OOM OOM OOM 92.90 59.38
GNNSafe 99.49 31.99 77.86 85.66 100.00 35.30 99.92 27.35 72.63 60.32 89.98 48.12
GRASP (Ours) 2.41 98.50 39.77 93.79 73.93 81.24 75.22 72.13 58.49 77.97 49.96 84.73

exhibit suboptimal performance on large-scale benchmarks, while our method GRASP robustly
performs the best.

GRASP exhibits significant advantages over training-based baselines. In addition to contrasting
with post hoc methods, we extend our comparison to a parallel line of graph Out-Of-Distribution
(OOD) detection research, which focuses on refining the training strategy to improve graph OOD
detection performance. The compared methods include GKDE [92], GPN [64] and OODGAT [63]. While
these approaches necessitate a costly re-training procedure, they perform mediocrely across all
small-scale datasets and even run out-of-memory on almost all large-scale benchmarks, rendering
them impractical for real-world deployment.

GRASP is performant on challenging heterophily datasets. As indicated in Table 2 and 3,
GNNSafe, which performs well on homophily datasets, experiences significant degradation on the
difficult heterophily benchmarks due to its naïve propagation mechanism. In contrast, GRASP
maintains optimal performance on these hard scenarios.

5.2 A Comprehensive Analysis of GRASP

Figure 5: Illustration of the number of edges
from each training node i to Sid and Sood on
Chameleon dataset. The x-axis denotes the
training node indices, ordered by h(i) from
low to high.

Ablation study on augmentation policy. Recall that the
key part of our method GRASP is the augmentation policy
that consists in adding edges to the training nodes with top
50% scores of h(i), which corresponds to the nodes on the
right side of Figure 5. We ablate the contributions of h(i)
by comparision with alternative augmentation approaches
that utilize h(i) differently in Table 4, specifically, (1)
selecting 50% of training nodes with the lowest h(i) val-
ues (left side of Figure 5), (2) randomly selecting 50% of
training nodes, corresponding to randomly picking node in-
dices from the x-axis of Figure 5, (3) directly adding edges
to Sid and Sood within the test set (i.e., TestAug), and (4)
a classic graph augmentation method named GAug [91],
which adds or removes edges based on an edge predictor that disregards h(i) completely. We have
the following key observations:

(a) Selection by h(i) is effective. For example, our strategy using the top 50% scores of h(i)
outperforms that uses random 50%, which, in turn, outperforms the low 50% way. This is because a
higher score of h(i) implies higher edge count towards ID data than to OOD data, which can increase
the ratios of intra-edges and improve OOD detection performance after propagation. In contrast, the
alternative augmentation method GAug, which does not consider the score h(i) at all, performs even
worse than the Low 50% policy.

(b) Directly adding edges to Sid and Sood within the test set is sub-optimal. Specifically, employing
this method leads to nearly 20% lower than that achieved with GRASP, which substantiates the notion
that “confirmation bias" can adversely affect the graph OOD detection.

Overall, the ablation study suggests that our proposed augmentation policy is crucial to OOD detection
performance.
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Table 4: Ablation study on OOD detection performance by different augmentation policy. We report averaged
AUROC over 5 independently pre-trained GCN models.

Strategy Cora Amaz Coau Cham Squi Avg
GAug 64.94 74.38 91.41 63.79 47.96 68.50
TestAug 59.24 75.78 95.00 50.58 48.64 65.85
Low 50% 88.84 95.02 97.21 54.60 53.52 77.84
Random 50% 90.23 95.37 97.45 65.32 57.59 81.19
Top 50% (Ours) 93.50 96.68 97.75 76.93 61.09 85.19

Table 5: GRASP consistently enhances the OOD detection performance of nodes connected by both inter-edges
and intra-edges on datasets characterized by a strong degree of heterophily (datasets highlighted in bold in the
table). However, naive propagation tends to compromise the performance of these nodes.

Datasets MSP MSP+prop MSP+GRASP
intra inter intra inter intra inter

cora 48.06 46.90 60.91 48.31 78.42 50.48
amazon 66.70 57.82 81.80 68.58 89.56 78.66
coauthor 87.72 73.30 93.88 81.37 94.85 83.21
chameleon 57.48 51.22 55.63 51.02 70.79 55.19
squirrel 44.76 38.45 43.74 37.04 49.89 41.69
reddit2 64.85 54.85 65.70 54.99 96.56 93.63
ogbn-product 31.72 37.73 37.10 43.63 67.95 64.30
arxiv-year 60.18 8.34 62.93 4.27 70.42 16.21
snap-patents 61.49 5.76 64.12 0.37 67.24 9.89
wiki 56.58 48.39 60.62 52.06 69.13 61.19

GRASP can effectively boost performance of challenging nodes connected by inter-edges. As
stated in the introduction 1, the reason OOD score propagation does not always work is the confusion
between ID and OOD nodes resulting from propagation along the inter-edges. For example in
heterophily datasets, where connected nodes tend to possess different labels, OOD nodes are more
likely to appear on the inter-edges. To assess the capability of our proposed augmentation propagation
method to address this challenge, we present in Table 5 the accuracy of detecting OOD nodes
connected by intra-edges (intra) and inter-edges (inter) respectively, using the original MSP without
any propagation, naive propagation based on MSP (MSP+prop), and our proposed augmentation
propagation (MSP+GRASP) respectively. From the results we can see that naive propagation performs
well only on strong homophily datasets, while on strong heterophily datasets (datasets highlighted in
bold in the table), its performance is even worse than without propagation, as expected. In contrast,
employing our augmentation method still results in substantial performance gain after propagation on
these challenging datasets.

GRASP is compatible with a wide range of OOD scoring methods. In Table 6, we demonstrate
the compatibility of GRASP with various alternative scoring functions. Each method generates OOD
scores to form a scoring vector; GRASP is then applied to facilitate score propagation. The use of
GRASP markedly surpasses the performance of its non-augmented counterpart across all datasets.

Table 6: GRASP is compatible with different OOD scoring functions. We compare OOD detection methods and
the performance after the simple propagation in Equation 1 (denoted by “+ prop") and with GRASP respectively.
We report AUROC results that are averaged over 5 independent pre-trained GCN models.

Method Cora Amazon Coauth Chamel Squirr
MSP 84.56 89.34 94.34 57.96 48.51
MSP+prop 88.02 95.32 97.15 50.35 36.21
MSP+GRASP 93.50 96.68 97.75 76.93 61.09
Energy 85.47 90.28 95.67 59.20 45.07
Energy+prop 87.52 96.27 95.82 50.42 36.49
Energy+GRASP 88.34 96.35 96.64 62.04 60.66
KNN 70.94 84.71 90.13 57.90 54.68
KNN+prop 73.70 92.36 95.47 49.76 53.99
KNN+GRASP 91.48 97.43 96.52 76.32 60.24
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