
Generalization Bound and Learning Methods
for Data-Driven Projections in Linear Programming

1The University of Tokyo, 2Hokkaido University

Shinsaku Sakaue1 and Taihei Oki2

NeurIPS2024 @ Vancouver, Canada

Linear Program
1

maximize
!∈ℝ!

𝑐$𝑥 subject to 𝐴𝑥 ≤ 𝑏

𝐴𝑐$ 𝑏𝑥 𝑥 ≤max s. t.

We want to solve high-dimensional LPs quickly.
E.g., in transportation planning, we solve LPs with 𝑛 = num.of edges in a network.

Projection Method
2

maximize
%∈ℝ"

𝑐$𝑃𝑦 subject to 𝐴𝑃𝑦 ≤ 𝑏

𝐴𝑐$ 𝑃 ≤max s. t.𝑦 𝑏𝑃 𝑦

Projection matrix 𝑃 ∈ ℝ&×(with 𝑘 ≪ 𝑛 reduces the LP dim. from 𝑛 to 𝑘.

If Im 𝑃 contains good solutions, we can quickly find them by solving 𝑘-dim. LPs!

Background: Random Projection
3

𝐴𝑐$ ≤max s. t.𝑦 𝑏𝑦

1

1

1

Akchen and Mišić (2024) used sparse 𝑃 for reducing LP dim. (column randomization)

Random projection for LPs has been emerging (Vu et al. 2018; Poirion et al. 2023),
inspired by random sketching in numerical linear algebra.

1

1

1

However, empirical solution quality has room for improvement (cf. Liberti et al. 2023).

Our Approach: Data-Driven Projection
4

Assume data of 𝑁 past LP instances are available: 𝜋* = 𝑐*, 𝐴*, 𝑏* for 𝑖 = 1,… ,𝑁.
Learn 𝑃 from 𝜋* *+,- and use it when solving LPs in the future.

Inspired by data-driven sketching in numerical linear algebra (Indyk et al. 2019).

maximize
%∈ℝ"

𝑐$𝑃𝑦 subject to 𝐴𝑃𝑦 ≤ 𝑏 𝜋, = (𝑐,, 𝐴,, 𝑏,)𝜋, = (𝑐,, 𝐴,, 𝑏,)𝜋* = (𝑐*, 𝐴*, 𝑏*)

Learn 𝑃

Questions:
1. How to learn good 𝑃 in practice?
2. How much data is enough for learned 𝑃 to generalize to future LPs?

LP data

Learning Method 1: PCA
5

Solve training LPs 𝜋* = (𝑐*, 𝐴*, 𝑏*) to find opt. sol. 𝑥* ∈ argmax 𝑐$𝑥 𝐴𝑥 ≤ 𝑏 .

Im 𝑃 should cover a 𝑘-dim subspaces close to 𝑥*’s.

Apply PCA to 𝑥,, … , 𝑥- $ so that 𝑥* ≈ 𝑃𝑦* holds for some 𝑦* ∈ ℝ(.

𝑥!
𝑥"

𝑥#

Im 𝑃

Learning Method 2: Gradient Ascent
6

Consider improving 𝑢 𝑃, 𝜋* directly by gradient-based updates.

Under some regularity conditions, we can compute the gradient w.r.t. 𝑃:

∇𝑢 𝑃, 𝜋* = ∇max 𝑐*$𝑃𝑦 𝐴*𝑃𝑦 ≤ 𝑏*

via the implicit function theorem.

Apply stochastic gradient ascent to maximize ,
-
∑*+,- 𝑢(𝑃, 𝜋*).

Experiments
7

Full = w/o projection; ColRand = random projection of Akchen and Mišić (2024).
PCA and SGA learn 𝑃 from data. All LPs are solved with Gurobi.

PCA and SGA lead to near optimal objectives in most datasets, outperforming ColRand.

Experiments
8

Full = w/o projection; ColRand = random projection of Akchen and Mišić (2024).
PCA and SGA learn 𝑃 from data. All LPs are solved with Gurobi.

Projection-based methods are much faster than Full. PCA and SGA enable fast “and” accurate solving.

Generalization Bound
9

Assume LP instances 𝜋 = 𝑐, 𝐴, 𝑏 ∈ Π are drawn from a distribution 𝒟.

Define 𝑢 𝑃, 𝜋 ≔ max 𝑐$𝑃𝑦 𝐴𝑃𝑦 ≤ 𝑏 and 𝒰 ≔ 𝑢 𝑃,⋅ : Π → ℝ 𝑃 ∈ ℝ&×(.

,
-
∑*+,- 𝑢(𝑃, 𝜋*) − 𝔼2∼𝒟 𝑢(𝑃, 𝜋) ≾ 5678 𝒰

-

Uniform convergence (Pollard 1984): given 𝜋* *+,- ∼ 𝒟-

for all 𝑃 ∈ ℝ&×(, w.h.p.,

Common idea in data-driven algorithm design (Gupta–Roughgarden 2017; Balcan 2021).

Empirical objective values
attained with 𝑃 at hand.

Expected objective values
attained with 𝑃 in the future.

Pseudo-dimension
(complexity) of 𝒰.

The bound holds uniformly for all 𝑃 ∈ ℝ&×(, regardless of how it is learned!

Pseudo-Dimension Bounds
10

Theorem pdim 𝒰 =]𝑂(𝑛𝑘:) (and Ω(𝑛𝑘)).

Proof idea (inspired by Balcan et al. 2022)
pdim 𝒰 = max 𝑁 s. t. ∃𝜋!… , 𝜋" ∈ Π, ∃𝑡!… , 𝑡" ∈ ℝ, 𝟙# $,&! '(!)*!

" 𝑃 ∈ ℝ+×- = 2".

𝑢 𝑃, 𝜋) ’s are attained at vertices; num. of vertices ≾ (#constraints)-.

“𝑢 𝑃, 𝜋) > 𝑡)?” is determined by inequalities of “obj. at some vertex > 𝑡)?”
which are polynomials of 𝑃 ∈ ℝ+×- of degree 𝑂(𝑘) due to Cramer’s rule.

By Warren’s theorem,
𝕀 𝑢 𝑃, 𝜋) > 𝑡))*!

" 𝑃 ∈ ℝ+×- ≾ 𝑁 #constraints -𝑘/(𝑛𝑘) +-.

Polynomials of 𝑃 ∈ ℝ"×$ partition
ℝ"×$ into cells. In each cell, outcomes
of “𝑢 𝑃, 𝜋% > 𝑡%?” remain the same.

Solving 𝑁 #constraints -/(𝑛𝑘) +- ≤ 2" implies the I𝑂(𝑛𝑘.) bound.

