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Linear Program

maximize c'x subjectto Ax < b
x€ERM

We want to solve high-dimensional LPs quickly.

E.g., in transportation planning, we solve LPs with n = num.of edges in a network.



Projection Method

maximize c'Py subjectto APy <b
yERK

Projection matrix P € R™¥ with k « n reduces the LP dim. from n to k.

If Im P contains good solutions, we can quickly find them by solving k-dim. LPs!



Background: Random Projection

Random projection for LPs has been emerging (Vu et al. 2018; Poirion et al. 2023),
Inspired by random sketching in numerical linear algebra.

Akchen and Misi¢ (2024) used sparse P for reducing LP dim. (column randomization)

However, empirical solution quality has room for improvement (cf. Liberti et al. 2023).



Our Approach: Data-Driven Projection
Assume data of N past LP instances are available: m; = (¢;, A;,b;) fori =1,...,N.
Learn P from {ni}’i\’zl and use it when solving LPs in the future.

Learn P LP data

maximize cTPy  subjectto APy < b < u——— = JJ
— m; = (¢i, A, bi)

Inspired by data-driven sketching in numerical linear algebra (Indyk et al. 2019).

Questions:
1. How to learn good P in practice?
2. How much data is enough for learned P to generalize to future LPs?



Learning Method 1: PCA

Solve training LPs m; = (¢;, 4;, b;) to find opt. sol. x; € argmax {c¢"x | Ax < b}.
Im P should cover a k-dim subspaces close to x;'s.

Apply PCA to (x4, ...,xy) T so that x; = Py; holds for some y; € RX.
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Learning Method 2: Gradient Ascent

Consider improving u(P, ;) directly by gradient-based updates.

Under some regularity conditions, we can compute the gradient w.r.t. P:
Vu(P, ;) = Vmax{c; Py | A;Py < b;}

via the implicit function theorem.

Apply stochastic gradient ascent to maximize %Z?’zlu(P, ;).



Experiments

Full = w/o projection; ColRand = random projection of Akchen and Misi¢ (2024).
PCA and SGA learn P from data. All LPs are solved with Gurobi.
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PCA and SGA lead to near optimal objectives in most datasets, outperforming ColRand.



Experiments

Full = w/o projection; ColRand = random projection of Akchen and Misi¢ (2024).
PCA and SGA learn P from data. All LPs are solved with Gurobi.
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Projection-based methods are much faster than Full. PCA and SGA enable fast “and” accurate solving.



Generalization Bound

Assume LP instances m = (¢, 4, b) € Il are drawn from a distribution D.

Define u(P, ) := max{c'Py | APy < b}and U = {u(P,):11 - R | P € R™%F},

Uniform convergence (Pollard 1984): given {m;}i, ~ DV

pdim(U)
N

forall P € R™*, whp, |=3¥, u(P,m;) — Erp[u(P,m)]| 3 \/

/ \

Empirical objective values  Expected objective values
attained with P at hand. attained with P in the future.

Pseudo-dimension
(complexity) of U.

The bound holds uniformly for all P € R™*¥, regardless of how it is learned!

Common idea in data-driven algorithm design (Gupta—Roughgarden 2017; Balcan 2021).



Pseudo-Dimension Bounds

Theorem pdim(U) = 0(nk?) (and Q(nk)).

Proof idea (inspired by Balcan et al. 2022)

pdim(1) = max N s.t. 37 ..., my € I, 3t; ..., ty € R, ‘{(nu(ﬁni»ti)i\' | P e Rk}l = 2N,

-
u(P,m;)'s are attained at vertices; num. of vertices < (#constraints)®.

‘u(P,m;) > t;?" is determined by inequalities of “obj. at some vertex > t;?"
which are polynomials of P € R™* of degree 0 (k) due to Cramer's rule.

By Warren's theorem,
‘{(H(u(P, i) > ti))liv=1 | P e IR%”XR}‘ < (N(#constraints)kk/(nk))nk,
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nk ~ . nxk o e
Solvina (N (#constraints)® /(nk < 2N implies the 0 (nk?) bound. Polynomials of P € R™** partition
J ( ( ) /( )) P ( ) R™ X into cells. In each cell, outcomes

of "u(P,m;) > t;?" remain the same.



