Generalization Bound and Learning Methods
for Data-Driven Projections in Linear Programming

Shinsaku Sakaue® and Taihei Oki?

The University of Tokyo, ?Hokkaido University

NeurlPS2024 @ Vancouver, Canada

Linear Program

maximize c'x subjectto Ax < b
x€ERM

We want to solve high-dimensional LPs quickly.

E.g., in transportation planning, we solve LPs with n = num.of edges in a network.

Projection Method

maximize c'Py subjectto APy <b
yERK

Projection matrix P € R™¥ with k « n reduces the LP dim. from n to k.

If Im P contains good solutions, we can quickly find them by solving k-dim. LPs!

Background: Random Projection

Random projection for LPs has been emerging (Vu et al. 2018; Poirion et al. 2023),
Inspired by random sketching in numerical linear algebra.

Akchen and Misi¢ (2024) used sparse P for reducing LP dim. (column randomization)

However, empirical solution quality has room for improvement (cf. Liberti et al. 2023).

Our Approach: Data-Driven Projection
Assume data of N past LP instances are available: m; = (¢;, A;,b;) fori =1,...,N.
Learn P from {ni}’i\’zl and use it when solving LPs in the future.

Learn P LP data

maximize cTPy subjectto APy < b < u——— = JJ
— m; = (¢i, A, bi)

Inspired by data-driven sketching in numerical linear algebra (Indyk et al. 2019).

Questions:
1. How to learn good P in practice?
2. How much data is enough for learned P to generalize to future LPs?

Learning Method 1: PCA

Solve training LPs m; = (¢;, 4;, b;) to find opt. sol. x; € argmax {c¢"x | Ax < b}.
Im P should cover a k-dim subspaces close to x;'s.

Apply PCA to (x4, ...,xy) T so that x; = Py; holds for some y; € RX.

.......................

~ \\

[N L
1 1 \A \
| P aGGEEEEE S PR TNy

' N [[l
[! N SO
[N N
[! . N
! g N N

1 1 ~
' N

Learning Method 2: Gradient Ascent

Consider improving u(P, ;) directly by gradient-based updates.

Under some regularity conditions, we can compute the gradient w.r.t. P:
Vu(P, ;) = Vmax{c; Py | A;Py < b;}

via the implicit function theorem.

Apply stochastic gradient ascent to maximize %Z?’zlu(P, ;).

Experiments

Full = w/o projection; ColRand = random projection of Akchen and Misi¢ (2024).
PCA and SGA learn P from data. All LPs are solved with Gurobi.

—— Full -+ ColRand - PCA --+- SGA
Packing MaxF'low MinCostFlow GROW7
Ol.O P AT TR TR TR T T T - 1.0 [irmtrmirrientrrrrrtamb vt - 1.0 [grmermtmmtme e Ty 1.0 f#we=s e et
g
—~
() ,/"‘ "‘5.."“‘\,
2 0.5 Pt 0.5 0.5 0.5
B o
.Q) =
J
0.0 0.0 = - 0.0 . 0.0 "
20 40 20 40 20 40 10 20 30
k k k k
ISRAEL SC205 SCAGR25 STAIR
g LU ‘ e I e e e e B R e g ptroct et IPE
g A
q>) +\ l—+’¢ “ ! Y
€O.5 R i 0.5 0.5 0.5 . —
) ¥ i e i g
:—8 I' \! = .,()‘x‘x‘x f’
O) X - #X - ;‘-::_;ﬁf -------- T LTI T T PR TR
0.0 --+=-m’-{+é?x 0.0 px=—=sfse—x Ko X b X X 0.0 px=—x=—-x X K- 0.0 pr=-=x-=—sem=x X e Y X o X
5 10 3 10 15 20 20 40 20 40
k k k k

PCA and SGA lead to near optimal objectives in most datasets, outperforming ColRand.

Experiments

Full = w/o projection; ColRand = random projection of Akchen and Misi¢ (2024).
PCA and SGA learn P from data. All LPs are solved with Gurobi.

—e— Full --*- ColRand ~== PCA -+ SGA
Packing MaxFlow MinCostFlow GROWT

~~
w
.- -—1 5
S 10 107!
= 1n0-3
= 10 5
g 4 10—2 g - XS == 2 o) - o m— m_ 10_
o) '*;-:* !‘—w.‘ =]_O— —ipaaerX X7 X X
b +‘£i~r‘.—__§£.:§w phphixe =X /x— —E .*Aﬁ‘*"'.““ o = b whearpANE - — & ﬂ::
+. - 7’ Y, a - -y e § .t
E et Y:{-:' ,x PR ,"/ PR el 10—3 X7, - P etalivnd v
= RIS A _3 I,+‘T“ . Vst PP T
!CJ: 10_4 ' i 10 3 =]‘0—3 “»;,3‘“* x” -
~
20 40 20 40 20 40 10 20 30
k k k K
i, ISRAEL g SC205 SCAGR25 STAIR
=z 10
£ 103 1071 104
=
@) o+ ’
* _4-.. ey —3) K- -_—
,_S 2 ---g.-.-;:w’mb:*-‘“t"- -F 10 10 2 —— _.‘. :‘: 10 2 g
.‘.. e ima s uiag o = AT L o e X o
9 e T soandT8 uniges e bRt I Dl X m—m ot BT
& I F X’ . T L
E o0 «’*’l x ,‘,_.+"‘+ -x":) ,‘*‘_.ml-) +¢ s b 2
= rill s 2 0 em P mee e T Yo e e a X e X o X X 1073 f-#= 1073 [z~
g 10_ L - st 308 2 10_4 =X «;"; =
~

Projection-based methods are much faster than Full. PCA and SGA enable fast “and” accurate solving.

Generalization Bound

Assume LP instances m = (¢, 4, b) € Il are drawn from a distribution D.

Define u(P,) := max{c'Py | APy < b}and U = {u(P,):11 - R | P € R™%F},

Uniform convergence (Pollard 1984): given {m;}i, ~ DV

pdim(U)
N

forall P € R™*, whp, |=3¥, u(P,m;) — Erp[u(P,m)]| 3 \/

/ \

Empirical objective values Expected objective values
attained with P at hand. attained with P in the future.

Pseudo-dimension
(complexity) of U.

The bound holds uniformly for all P € R™*¥, regardless of how it is learned!

Common idea in data-driven algorithm design (Gupta—Roughgarden 2017; Balcan 2021).

Pseudo-Dimension Bounds

Theorem pdim(U) = 0(nk?) (and Q(nk)).

Proof idea (inspired by Balcan et al. 2022)

pdim(1) = max N s.t. 37 ..., my € I, 3t; ..., ty € R, ‘{(nu(ﬁni»ti)i\' | P e Rk}l = 2N,

-
u(P,m;)'s are attained at vertices; num. of vertices < (#constraints)®.

‘u(P,m;) > t;?" is determined by inequalities of “obj. at some vertex > t;?"
which are polynomials of P € R™* of degree 0 (k) due to Cramer's rule.

By Warren's theorem,
‘{(H(u(P, i) > ti))liv=1 | P e IR%”XR}‘ < (N(#constraints)kk/(nk))nk,

~=<

=

——

nk ~ . nxk o e
Solvina (N (#constraints)® /(nk < 2N implies the 0 (nk?) bound. Polynomials of P € R™** partition
J (() /()) P () R™ X into cells. In each cell, outcomes

of "u(P,m;) > t;?" remain the same.

