
DeepDRK: Deep Dependency Regularized Knockoff for Feature Selection
Hongyu Shen1, Yici Yan2, Zhizhen Zhao1

1Department of Electrical and Computer Engineering, UIUC, IL, USA 2Department of Statistics, UIUC, IL, USA

Introduction
➣ Goal: Select the features associated with the linear response Y , given the
covariate design matrix X , with a controlled false discovery rate (FDR) under
the Model-X knockoff framework.
➣ Challenges: Unknown data distribution and small sample size.
➣ Approach: Deep generative models have been used for knockoff generations
for non-Gaussian data:

● Deep Knockoff [4], KnockoffGAN [2], sRMMD [3], and DDLK [6]
● Performance declines as the sample size decreases and the data distribu-

tions become more complex.
➣ Our approach: DeepDRK generates knockoffs with a novel transformer-
based generator and a random perturbation technique.

Preliminary

➢ Core ingredients: Learned knockoff variables X̃ and knockoff statistics
wj((X, X̃), Y ) for j ∈ [p].
➢ Two required conditions for the knockoff variables and the knockoff statistics:

● Swap property: (X, X̃)swap(B)
d=(X, X̃), ∀B ⊂ [p];

● Flip-sign property:

wj

(
(X, X̃)swap(B), Y

)
=

wj((X, X̃), Y ), if j /∈ B

−wj((X, X̃), Y ), if j ∈ B

;
➣ Feature selection with controlled FDR at nominal level q:

● Selection rule: S = {wj ≥ τq};
● Threshold: τq = mint>0

{
t : 1+|{j:wj≤−t}|

max(1,|{j:wj≥t}|) ≤ q
}

.

Methodology–Training Stage

➣ The Knockoff Transformer takes X and i.i.d. standard Gaussian random
variables Z as the inputs to generate the knockoffs X̃θ ;
➣ Use K swappers {Sωi

}K
i=1 to create adversarial environments for testing the

swap property;
➣ The swap loss LSL(X, X̃θ, {Sωi

}K
i=1) aims to enforce the swap property;

➣ The dependency regularization loss LDRL(X, X̃θ) aims to decorrelate the data
X and the knockoff X̃θ.

➣ Training objective:

min
θ

max
ω1,...,ωK

{
LSL(X, X̃θ, {Sωi

}K
i=1) + LDRL(X, X̃θ)

}
➣ The swap loss includes three terms:

LSL(X, X̃θ, {Sωi
}K

i=1) = 1
K

K∑
i=1

SWD((X, X̃θ), (X, X̃θ)Sωi
)

+ λ1 · REx(X, X̃θ, {Sωi
}K

i=1) + λ2 · Lswapper({Sωi
}K

i=1)
● The first term uses sliced Wasserstein distance to measure the distance

between the joint distributions of (X, X̃θ) and (X, X̃θ)Sωi
;

● The second term measures the variance of the SWDs under different
swap realizations;

● The third term prevents the mode collapse on the parameters ωi of
different swappers;
➣ LDRL(X, X̃θ) uses the sliced Wasserstein correlation (SWC) to quantitatively
measure the dependency between X and X̃θ.

Methodology–Post-training Perturbation

➣ Perturb the learned knockoff X̃θ:

X̃DRP
θ,n = (1 − αn) · X̃θ + αn · Xrp,

where Xrp is the random row permutation of the design matrix X .
➣ The perturbation aims to reduce collinearity [5].
➣ As n → ∞, αn → 0.

Results-Synthetic Data

0.0

0.2

0.4

0.6

0.8

1.0

Po
w

er

Gaussian Mixture Copula: Clayton & Exponential Copula: Joe & Exponential

0.0 0.2 0.4 0.6 0.8
FDR

0.0

0.2

0.4

0.6

0.8

1.0

Po
w

er

Gaussian Mixture

0.0 0.2 0.4 0.6 0.8
FDR

Copula: Clayton & Exponential

0.0 0.2 0.4 0.6 0.8
FDR

Copula: Joe & Exponential

Sample Size: 200

Sample Size: 2000

Method
sRMMD
Deep Knockoff
DeepDRK
KnockoffGAN
DDLK
Scale
5
10
15
20

➣ Sample size: n = 200 or 2000; data dimension: p = 100
➣ Model: Y ∼ N (XTβ, 1); feature sparsity: 20
➣ Nonnull βj ∼ p

scale·
√

n
· Rademacher(0.5);

➣ FDR nominal threshold q = 0.1.

Discussion
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➣ Compare the means and the standard deviations of the knockoff statistics wj’s;
➣ Positive shifts in the null knockoff statistics from baseline models cause:

● smaller thresholds τq, as fewer null statistics are remaining on the negative
side (lower |{j : wj ≤ −t}|), where τq = mint>0

{
t : 1+|{j:wj≤−t}|

max(1,|{j:wj≥t}|) ≤ q
}

;
● Increase in the number of false positives given the selection rule S = {wj ≥

τq}.
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➣ X drawn from single-cell RNA sequencing (scRNA-seq) [1] and used to sim-
ulate response Y ;
➣ n = 10000 and p = 100.

Conclusion

➣ We developed DeepDRK for feature selection with controlled FDR for non-
Gaussian data and limited sample size;
➣ Paper link: https://arxiv.org/pdf/2402.17176v2;
➣ GitHub: https://github.com/nowonder2000/DeepDRK.
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