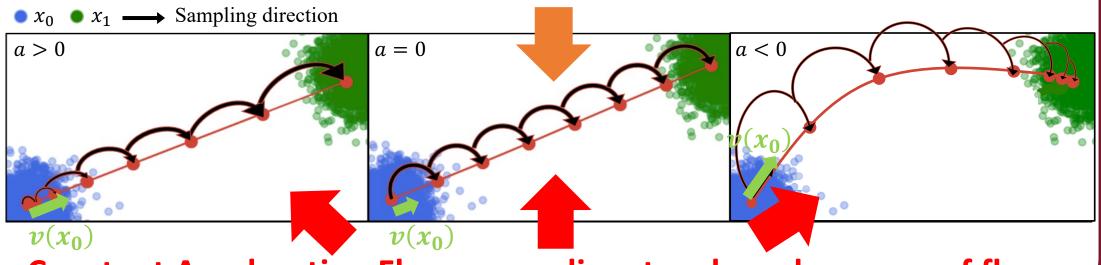

KOREA KAIST

Motivation

- > Flow-based approaches, such as rectified flow/reflow, have demonstrated remarkable success in few-step generation.
- > However, their performance remains limited in few-step scenarios, due to two key challenges:
- 1) Ambiguity: Flow crossing introduce directional ambiguity, leading to estimation inaccuracies.
- 2) **Expressivity**: Modeling flows between complex distributions with a single velocity may limit expressivity to capture intricate patterns.

Flow crossing


- Flow crossing $(x_t^1 = x_t^2)$ results in different ground truth targets at the same location, introducing **ambiguity** in learning.
- This ambiguity causes flows to curve, reducing accuracy in fewstep sampling.
- > Our Initial Velocity Conditioning mitigates this limitation, ensuring more precise flow estimation.

Constant Velocity vs. Constant Acceleration

- Rectified flow only represents linear flow with constant speed.
- Constant Acceleration Flow can represent diverse flows based on the initial velocity $v_0(x_0)$ with closed-form solution.

Rectified Flow represents a specific, singular case of flow.

Constant Acceleration Flow generalizes to a broader range of flows.

Constant Acceleration Flow

Dogyun Park, Sojin Lee, Sihyeon Kim, Taehoon Lee,

Youngjoon Hong[†], Hyunwoo J. Kim[†]

Main framework

Ordinary Differential Equation of Constant Acceleration Flow Eq(1). CAF ODE

Initial Velocity Acceleration field $dx_t = \frac{v(x_0)dt}{v(t_0)}dt + t \cdot \frac{a(x_t)dt}{a(t_0)}dt$

By integrating both sides of Eq(1) w.r.t time and assuming a **constant** acceleration field ($a(x_{t_1}) = a(x_{t_2}), \forall t_1, t_2 \in [0, 1]$), we derive the following **solution of ODE**: Fa(2). Closed-form solution

$$x_t = x_0 + v(x_0)t + \frac{1}{2}a(x_t)t^2$$

$$+\frac{1}{2}a(x_t)t^2$$

$$x_1 = x_0 + v(x_0) + \frac{1}{2}a(x_t)$$

Stage 1. Initial Velocity Field v_{θ}

The **initial velocity** is defined as a **scaled displacement vector** between x_1 and x_0 .

 θ is optimized to minimize a **distance metric** d between target and estimation.

 $\frac{v(x_0)}{v(x_0)} = h(x_1 - x_0)$ $\min_{\theta} \mathbb{E}\left[d(v(x_0), v_{\theta}(x_t))\right]$

Stage 2. Acceleration Field a_{ϕ}

Using the learned initial velocity field v_{θ} , the corresponding acceleration **field** is derived directly from Eq(2). Initial Velocity Conditioning (IVC)

Initial Velocity Conditioning (IVC)

We introduce **conditioning the initial velocity** as an additional input to the acceleration model.

This provides **directional information** to the model, effectively reducing ambiguity in flow estimation.

Qualitative results

Qualitative comparison between 2-Rectified Flow and ours. Our model generates more vivid and detailed images than 2-RF.

2-RF

Ours

2-RF

Ours

Github

Quantitative results

CAF achieve comparable or stronger performance

compared to SOTA models.

CIFAR10 32x32

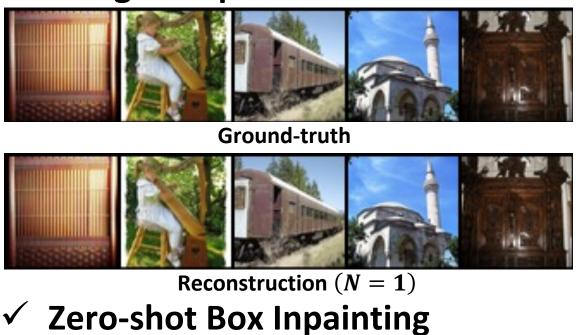
Diffusion/Consistency Models	Ν	FID↓	FID↓					
Diff-Instruct [9]	1	4.53	-					
OMD [44]	1	3.77	-	ImageNet 64x6	<u>54</u>			
OFNO [5]	1	3.78	-	D'00			T ~ A	
FRACT [45]	1	3.78	-	Diffusion/Consistency Models	s N	FID↓	IS ↑	Recall1
KD [46]	1	9.36	-	Diff-Instruct [9]	1	5.57	-	-
	2	2.93	-	DMD [44]	1	2.62	-	-
CD [<mark>6</mark>]	1	3.55	-	TRACT [45]	1	7.43	-	-
	2	1.87	1.63	DFNO [5]	1	7.83	-	0.61
CTM [7]	1	1.98	1.73	PD [3]	1	15.39	-	0.62
Rectified Flow Models				CD [6]	2	4.70	-	<u>0.64</u>
					1	6.20	40.08	0.57
2-Rectified Flow [10]	2	7.89	3.74	CTM [7]	2	<u>1.73</u>	<u>64.29</u>	0.57
	1	11.81	6.88		1	1.92	70.38	0.57
2-Rectified Flow + Distill [10]	1	4.84	-	Rectified Flow Models				
CAF (Ours)	1	4.81	2.68	CAF (Ours)	1	6.52	37.45	0.62
CAF + GAN (Ours)*	1	1.48	1.39	CAF + GAN (Ours)*	1	1.69	62.03	<u>0.64</u>
		*ci	notuning	with adversarial loss us	ing r	al data		

Analysis

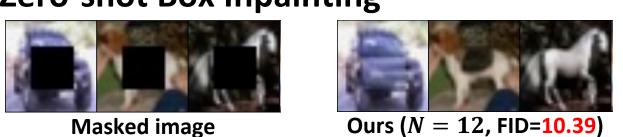
Ablation study

We conduct an ablation study to analyze the impact of **three components** in few-step generation:

Table 5. Adiation study on CIFAR-10 ($N = 1$).					
Config	Constant acceleration	v_0 condition	Reflow procedure	FID↓	
А	×	×	×	378	
В	×	×	\checkmark	6.88	
С	✔(h=1.5)	×	v	3.82	
D	✔(h=1.5)	~	~	2.68	


Table 5. Ablation study on CIFAR-10 (N-1)

- A vs. B: Effectiveness of reflow
- **B vs. C**: Expressiveness of **CAF**
- **C vs. D**: Effectiveness of **IVC**


Applications

Reconstruction using CAF Inversion

By our IVC, CAF achieves accurate reconstruction using only a single-step inversion.

Table 6: Reconstruction error.				
Model	N	$\mathbf{PSNR}\uparrow$	LPIPS \downarrow	
СМ	-	N/A	N/A	
СТМ	-	N/A	N/A	
EDM	4	13.85	0.447	
2-RF	2	33.34	0.094	
2-RF	1	29.33	0.204	
CAF (Ours)	1	46.68	0.007	
CAF (+GAN) (Ours)	1	40.84	0.028	

2-RF (N = 12. FID=16.41)