Assouad, Fano, and Le Cam with Interaction: A Unifying Lower Bound Framework and Characterization for Bandit Learnability

Fan Chen, Dylan J. Foster, Yanjun Han, Jian Qian, Alexander Rakhlin, Yunbei Xu

https://arxiv.org/abs/2410.05117

Interactive Decision Making

Examples: robotics, games, clinical trails, reinforcement learning, etc.

Goal of this work

Understand the fundamental limits for statistical estimation and interactive decision making problems.

Decision Making with Structured Observation (DMSO) Framework

Interaction protocol

For each round t = 1, ..., T:

- The learner selects a decision $\pi^t \in \Pi$, where Π is the decision space.
- The learner receives an observation $o^t \in \mathcal{O}$ sampled via $o^t \sim M^*(\pi^t)$, where \mathcal{O} is the observation space.

After T rounds, the learner outputs $\hat{\pi} \in \Pi$ and incurs a loss $L(M^{\star}, \hat{\pi})$.

- $M^{\star}:\Pi \to \Delta(\mathcal{O})$ is the *model* of the environment
- Learner is given a model class $\mathcal{M} \subseteq (\Pi \to \Delta(\mathcal{O}))$ containing M^*
- Example: structured bandits/contextual bandits, episodic RL, etc.

Decision Making with Structured Observation (DMSO) Framework

Interaction protocol

For each round t = 1, ..., T:

- The learner selects a decision $\pi^t \in \Pi$, where Π is the decision space.
- The learner receives an observation $o^t \in \mathcal{O}$ sampled via $o^t \sim M^*(\pi^t)$, where \mathcal{O} is the observation space.

After T rounds, the learner outputs $\hat{\pi} \in \Pi$ and incurs a loss $L(M^{\star}, \hat{\pi})$.

- $M^{\star}:\Pi \to \Delta(\mathcal{O})$ is the *model* of the environment
- Learner is given a model class $\mathcal{M} \subseteq (\Pi \to \Delta(\mathcal{O}))$ containing M^{\star}
- Example: structured bandits/contextual bandits, episodic RL, etc.
- Special case: statistical estimation
 - Non-interactive: $o^1, \cdots, o^T \sim M^{\star}$ independently

Minimax Risk

Minimax criterion

The $\mathit{T}\text{-}\mathsf{round}$ minimax risk is defined as

$$\min_{\text{alg}} \max_{M \in \mathcal{M}} \mathbb{E}^{M, \text{alg}} L(M, \widehat{\pi})$$

- \min over all possible $\mathit{T}\text{-round}$ algorithm ALG with output $\widehat{\pi}$
- max over the *worst-case* model $M \in \mathcal{M}$

Minimax Risk

Minimax criterion

The T-round minimax risk is defined as

```
\min_{\mathsf{Alg}} \max_{M \in \mathcal{M}} \mathbb{E}^{M, \mathsf{Alg}} L(M, \widehat{\pi})
```

- \min over all possible $\mathit{T}\text{-round}$ algorithm ALG with output $\widehat{\pi}$
- max over the *worst-case* model $M \in \mathcal{M}$

Statistical estimation (non-interactive):

- Standard and well-understood in statistics
- Proving upper bound: choosing a particular algorithm
- Proving lower bound: requires specialized techniques
 - Le Cam's two-point method
 - Assouad's lemma
 - Fano's inequality

Minimax Risk

Minimax criterion

The T-round minimax risk is defined as

```
\min_{\mathsf{Alg}} \max_{M \in \mathcal{M}} \mathbb{E}^{\mathsf{M}, \mathsf{Alg}} L(M, \widehat{\pi})
```

- \min over all possible $\mathit{T}\text{-round}$ algorithm ALG with output $\widehat{\pi}$
- max over the *worst-case* model $M \in \mathcal{M}$

Beyond statistical estimation:

- Upper & lower bounds: case-by-case
- Foster et al. [2021] proposes Decision-Estimation Coefficient (DEC) framework, providing both lower and upper bounds for any DMSO problem
 - DEC approach is seemingly different from the classical techniques
 - The DEC lower & upper bounds have a gap related to the complexity of estimation [Foster et al., 2021, 2023]

Contributions

- A unifying framework for information-theoretic lower bound in statistical estimation and interactive decision making, which recovers
 - Le Cam's two-point method, Assouad's lemma, Fano's inequality
 - The DEC lower bound approach
- A novel complexity measure, the Fractional Covering Number
 - A new lower bound for interactive decision making (and complements the DEC lower bound)
 - A unified characterization of learnability for *any* structured stochastic bandit problem
 - Polynomially matching lower and upper bounds for any convex model class

Fractional covering number

$$\mathsf{N}_{\mathrm{frac}}(\mathcal{M},\Delta) := \inf_{p \in \Delta(\Pi)} \sup_{M \in \mathcal{M}} \frac{1}{p(\pi : L(M,\pi) \leq \Delta)}.$$

- Measuring the best possible coverage over $\Delta\text{-}\mathsf{optimal}$ decisions

Fractional covering number

$$\mathsf{N}_{\mathrm{frac}}(\mathcal{M}, \Delta) := \inf_{p \in \Delta(\Pi)} \sup_{M \in \mathcal{M}} \ \frac{1}{p(\pi : L(M, \pi) \leq \Delta)}.$$

- Measuring the best possible coverage over $\Delta\text{-}\mathsf{optimal}$ decisions
- Dual form of the fractional cover

Theorem (Fractional covering number lower bound; Informal)

For a *T*-round algorithm to achieve risk $\leq \Delta$, it is necessary that

 $T \ge \Omega(\log \mathsf{N}_{\mathrm{frac}}(\mathcal{M}, \Delta) / C_{\mathrm{KL}}),$

where $C_{\rm KL}$ is the radius of the model class \mathcal{M} under KL divergence.

Complementary to the DEC lower bound

Fractional covering number

$$\mathsf{N}_{\mathrm{frac}}(\mathcal{M},\Delta) := \inf_{p \in \Delta(\Pi)} \sup_{M \in \mathcal{M}} \frac{1}{p(\pi : L(M,\pi) \le \Delta)}.$$

- Application 1: bandit learnability (and beyond)
- Observation: fractional covering number also provides an upper bound!
- There is a brute-force algorithm that returns a 2Δ -optimal decision using $T \leq \widetilde{O}\left(\frac{\mathbb{N}_{\mathrm{frac}}(\mathcal{M},\Delta)}{\Delta^2}\right)$ rounds

Theorem (Bandit learnability)

A class \mathcal{M} of stochastic bandits (with Gaussian rewards) is learnable with finite T if and only if $N_{\mathrm{frac}}(\mathcal{M}, \Delta) < +\infty$ for all $\Delta > 0$.

$$\mathsf{N}_{\mathrm{frac}}(\mathcal{M}, \Delta) := \inf_{p \in \Delta(\Pi)} \sup_{M \in \mathcal{M}} \; \frac{1}{p(\pi : L(M, \pi) \le \Delta)}.$$

- Application 1: bandit learnability (and beyond)
- Application 2: tighter upper bound for convex class
- ${\scriptstyle \bullet \ }$ \Rightarrow Polynomially matching lower and upper bounds for convex model class

Thanks!

- Dylan J Foster, Sham M Kakade, Jian Qian, and Alexander Rakhlin. The statistical complexity of interactive decision making. arXiv preprint arXiv:2112.13487, 2021.
- Dylan J Foster, Noah Golowich, and Yanjun Han. Tight guarantees for interactive decision making with the decision-estimation coefficient. In *The Thirty Sixth Annual Conference on Learning Theory*, pages 3969–4043. PMLR, 2023.

<ロ> < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < ()、 < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (), < (),