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Motivation: Transformers vs RNNs

Transformers

Parallelizable Training
(great for GPUs!) ✓

Generation is expensive (KV
cache grows with sequence
length) ✗

RNNs

Sequential Training (hard to
get GPU speed up over the
sequence length) ✗

Stateful generation ✓
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DEER
Y.H. Lim, Q. Zhu, J. Selfridge, and M.F. Kasim. 
Parallelizing non-linear sequential models over the 
sequence length. ICLR, 2024.



Scalable and Stable Parallelization of RNNs

Scalability: 

+ Diagonal Jacobian
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Stability:

+ Trust region

+ Kalman filter
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Use parallel associative scan
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DEER

∆s(i+1)
t =

[
∂ft

∂s (s(i)
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]
∆s(i+1)

t−1 − rt(s(i))

−rt(s(i)) = f(s(i)
t−1) − s(i)

t
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Come by our poster to learn more!
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+ Diagonal Jacobian
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Stability:

+ Trust region

+ Kalman filter

Paper: https://arxiv.org/abs/2407.19115

Code: https://github.com/lindermanlab/elk

https://arxiv.org/abs/2407.19115
https://github.com/lindermanlab/elk

