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Deep Learning for Inverse Problems

Figure: Learn the data-driven prior by deep learning when the measurement is sparse 1

Inverse problems arise from a wide range of applications across many domains,
including computational imaging, remote sensing, and so on.

The goal is to reconstruct an unknown signal xtrue given the observed measurements y of
the form y = A(xtrue) + ϵ, where ϵ can be an additive noise.

Deep learning models that learn the data prior (distribution of p(xclean,y )) help reconstruct
the clean images from very sparse measurements.

1
Shen, Liyue et al., Patient-specific reconstruction of volumetric computed tomography images from a single projection view via

deep learning, Nature biomedical enfgineering
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Deep Learning for Inverse Problems

Supervised Approaches (assuming that the xclean, y pair is available during
training, train a network that maps y to xclean)

Need to retrain for a different inverse problem
Generalization capabilities may be limited in the presence of noise/modality
shift
Need paired data for training

Unsupervised Approaches (assuming that only xclean is available during
training)

Easily adapt to a new inverse problem in a zero-shot manner.
Do not need paired data for training.

Both approaches are widely reported in the literature [8].
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Diffusion (Score-based) Models

Denoising diffusion models consist of two processes

Figure: An illustration of the diffusion pipeline [9]

A forward process in which gradually add noise to xclean

A reverse denoising process that remove noise from xt to recover xclean

Specifically, the reverse process is governed by the score function ∇ log p(xt). Training a
neural network that approximates ∇ log p(xt) would enable data generation capability.
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Mathematical Formulation of Diffusion Process

As xt ≈ xt−1 − βt∆t
2 xt−1 +

√
βt∆tω where ω ∈ N(0, 1)

As ∆t → 0, then dxt = − 1
2βt xt dt +

√
βt dωt

Figure: The mathematical formulation of diffusion process [1]

The solution of the stochastic differential equation can be utilized by the score function

we can use a neural network to approximate it, such as sθ(xt ) ≈ ∇xt log p(xt )

Bowen Song*, Jason Hu*, Zhaoxu Luo, Jeff Fessler, Liyue Shen DiffusionBlend November 22, 2024 5/24



Introduction
Background

Methods

Experiments

References

Solving Inverse Problem with Diffusion Models

Figure: the flowchart of Score SDE [4]. Each x̂t is modified through optimization

To solve linear inverse problems with diffusion model priors, we can use
hard consistency: modify xt with optimization, such as with the objective
argminzλ||x̂t − z||22 + (1 − λ)||ŷt − Az||22 [4, 3]
soft consistency: change ∇xt log p(xt) to ∇xt log p(xt |y) via Bayesian rule [1, 5]. We
have ∇xt log p(xt |y) = ∇xt log p(y |xt) +∇xt log p(xt), with ∇xt log p(y |xt) can be
approximated through ∇xt log p(y |x̂0(xt))
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Background: CT Reconstruction

By taking the log of the photon flux, we are able to encode the material physical properties.

The forward process is given by a linear transformation called "Radon Transform", which
has the formula Rf (ρ, θ) =

∫∞
−∞

∫∞
−∞ f (x , y) δ(x cos θ + y sin θ − ρ) dx dy .

Denote the matrix of Radon Transform be A, the measurement (projections) is given by
Ax + n, where n is usually a Poisson-Gaussian noise, and in a high-dose setting, we can
just ignore this term.
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Background: CT Reconstruction

To reconstruct the original signal from the projections, we need to invert
the Radon Transform process
The backprojection formula is given by f (x , y) =

∫ π

0 pθ(x cos θ + y sin θ)dθ. The
vanilla backprojection without filtering gives blurry reconstruction.
After adding a ramp filter to the backprojection, we are able to reconstruct
high-quality images with full-view projections (like 180 projections).
f (x , y) =

∫ π

0 R−1 (F (ρ) ∗ h(ρ)) (x cos θ + y sin θ)dθ
Nevertheless, the filtered backprojection fails to reconstruct high-quality images
when the forward operator is ill-posed (i.e. when projections are sparse).
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Learning cross slice scores

Most existing diffusion-based methods for CT reconstruction use the
scores of 2D slices [8]. There is no existing works on the usage of
cross-slice 3D scores for CT reconstruction
We observe that learning the distribution of the score of a combination
of 2D slices can be effectively used for 3D CT reconstruction

Bowen Song*, Jason Hu*, Zhaoxu Luo, Jeff Fessler, Liyue Shen DiffusionBlend November 22, 2024 9/24



Introduction
Background

Methods

Experiments

References

Learning cross slice scores

Specifically, let ∇ log px [i] be the score of the ith 2D CT slice. Existing
works model ∇ log px ≈

∑
i ∇ log px [i], and add external regularizations

such as total variation to restrict the variability of inter-slice changes.
We propose to learn the cross slice score ∇ log px [ii , ..., ik ]
However, combining each cross slice score into the score of the entire
volume is not a trivial task. i.e. how to write ∇ log px into a formula of
∇ log px [ii , ..., ik ]?
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DiffusionBlend

We propose a novel method do this by add conditional slice information to
the original summation equation
Instead of using ∇ log px ≈

∑
i ∇ log px [i], we can rewrite this into

∇ log px ≈
∑

i ∇ log p(x [i]|x [i − 1], x [i + 1]) This equation is more
accurate if we assume that x [i] are not independent of each other (but
dependent on neighboring slices).
We then train a diffusion network, that takes a batch of 2D noisy slices as
input and then denoise the central slice. We call this method
DiffusionBlend
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DiffusionBlend++

However, training a conditional diffusion model on noisy slices discard the
joint slice distribution that we can learn.
If we can learn ∇ log p(x [i], x [i − 1], x [i + 1]), then we can compute
∇ log p(x [i]|x [i − 1], x [i + 1]) through marginal probability.
However, if we directly sum up ∇ log p(x [i], x [i − 1], x [i + 1]) for each
three blocks, we will lose the dependency information of each blocks. i.e.
we learn no information about p(x [i]|x [i + 2])
We propose a novel method that randomly partition the 3D volumes
into different joint slices blocks, and compute the score of the partition at
each reverse sampling time step.
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DiffusionBlend++

Why Random Partitioning work?
Even though we may loss the cross-block conditional information at time
t, with a different partition at t-1, the border of the original block
incorporates the information of adjacency slices. So that it approximates
the score of ∇ log p((x [i], x [i − 1], x [i + 1]) ∪ (x [i + 2], x [i + 3]))
By doing random paritioning and score computing many times, we are
able to approximate the score of the entire 3D volume.
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Overview of Our Method
We propose to randomly partition the volume at the reverse inference step
and then compute the score respective of the partition while adding data
consistency.

Bowen Song*, Jason Hu*, Zhaoxu Luo, Jeff Fessler, Liyue Shen DiffusionBlend November 22, 2024 14/24



Introduction
Background

Methods

Experiments

References

DiffusionBlend++

One drop back of the naive random paritioning method is that it only
learns the score of adjacency slices
We can design a skip slice partitioning score that not only learns the
score of adjacency slices, but the dependency of jumping slices (for
example: dependency of slice 1, slice 4 and slice 7).
The intuition of this approach is that the naive cross-slice score
∇ log p(x [i], x [i − 1], x [i + 1]) with the partitioniong
(x [i], x [i − 1], x [i + 1]) ∪ (x [i + 2], x [i + 3], x [i + 4]...)can have border
artifacts.
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DiffusionBlend++

We propose a novel method to learn the score of the joint borders. For
example, for a border of a partition
(x [i], x [i−1], x [i+1])∪(x [i+2], x [i+3], x [i+4])∪(x [i+5], x [i+6], x [i+7])),
we can learn the joint border score ∇ log p(x [i + 1], x [i + 4], x [i + 7]), and
then apply the previous algorithm to blend with this score during reverse
sampling.
We preserve more inter-slice information through this joint border score.
We are able to remove artifacts on the border of the partition.
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DiffusionBlend++

We also want to keep all different score computation done by one model.
If we use different diffusion models, the same noise may not lead to the
same output. To do this we propose to use a relative encoding method:
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DiffusionBlend++

We propose to condition the diffusion model on the partition type,
specifically, the distance between two slices in one block from the
partition
For instance, a partition of
(x [i], x [i−1], x [i+1])∪(x [i+2], x [i+3], x [i+4])∪(x [i+5], x [i+6], x [i+7]))
has the code to be 1, and a partition of
(x [i], x [i−3], x [i+3])∪(x [i+1], x [i−2], x [i+4])∪(x [i+2], x [i−1], x [i+5]))
has the code to be 3
Fourier embedding is then computed for the code, and then feed into the
diffusion model
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DiffusionBlend++

Algorithm PseudoCode:

Bowen Song*, Jason Hu*, Zhaoxu Luo, Jeff Fessler, Liyue Shen DiffusionBlend November 22, 2024 19/24



Introduction
Background

Methods

Experiments

References

Experimental Setting

We perform experiments on two CT datasets: AAPM LDCT, and LIDC.
For each dataset, we perform two tasks: Sparse-View CT reconstruction
and Limited-Angle CT reconstruction.
For Sparse-view CT reconstruction, we consider three experimental
settings: 4 views, 6 views and 8 views.
For LACT, we consider 90 degree limited angle CT reconstruction
Results are evaluate on the entire of a patient in the validation set of both
AAPM and LIDC
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Quantitative Results
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Quantitative Results
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