Learning to Understand: Identifying Interactions via the Mobius Transform

Justin S. Kang¹, Yigit E. Erginbas¹, Landon Butler¹, Prof. Ramtin Pedarsani², Prof. Kannan Ramchandran¹

¹UC Berkeley

²UC Santa Barbara

NeurIPS 2024

Motivation: Sentiment Analysis

Glowing Paper Review

The concept of information entropy was introduced by Claude Shannon in his 1948 paper "A Mathematical Theory of Communication", and is also referred to as Shannon entropy. Shannon's theory defines a data communication system composed of three elements: a – source of data, a communication channel, and a receiver. The "fundamental problem of communication" – as expressed by Shannon – is for the receiver to be able to identify what data was generated by the source, based on the signal it receives through the channel ...

Motivation: Sentiment Analysis

Glowing Paper Review

The concept of information entropy was introduced by Claude Shannon in his 1948 paper "A Mathematical Theory of Communication", and is also referred to as Shannon entropy. Shannon's theory defines a data communication system composed of three elements: a – source of data, a communication channel, and a receiver. The "fundamental problem of communication" – as expressed by Shannon – is for the receiver to be able to identify what data was generated by the source, based on the signal it receives through the channel ...

Can we understand what part of the text triggers the model to produce the (erroneous) output?

Typical Solution: Mask and Try Again

able to identify what data was generated by the source ...

Shapley Value and SHAP

- SHAP software package: game-theoretic *Shapley Value*
- Assigns a score to each (group of) word related to its average marginal contribution to the overall score

Used by 15.7k

Shapley Value and SHAP

- SHAP software package: game-theoretic *Shapley Value*
- Assigns a score to each (group of) word related to its average marginal contribution to the overall score

Higher order information is useful

- First order information is deceptive: "never" is negative on its own.
- If "never" appears before "fails" connotation is positive.

Sentiment analyzer uses pretrained BERT fine-tuned on IMDB review dataset

Note: The version of the function used in this presentation differs slightly from the final version in the paper

Higher order information is useful

- First order information is deceptive: "never" is negative on its own.
- If "never" appears before "fails" connotation is positive.

Decomposing a function into constituent parts - summing over all interactions

The Mobius Transform (AND basis)

• The Mobius transform is defined as:

$$F(\mathbf{k}) = \sum_{\mathbf{m} \le \mathbf{k}} (-1)^{\mathbf{1}^{\mathrm{T}}(\mathbf{k}-\mathbf{m})} f(\mathbf{m})$$

• The "Backwards" transform is:

$$f(\mathbf{m}) = \sum_{\mathbf{k} \le \mathbf{m}} F(\mathbf{k})$$

August Möbius

Gian-Carlo Rota

• Decompose the function in terms of effects of sets of inputs: polynomial

 $f(\mathbf{m}) = -0.44m_3 + -0.96m_4 + 0.06m_6 + \dots + 1.14m_3m_4 + -0.11m_3m_6 + -0.18m_4m_6 + 0.38m_3m_4m_6 + \dots$

• Decompose the function in terms of effects of sets of inputs: polynomial

$$f(\mathbf{m}) = -0.44(1) + -0.96(1) + 0.06(1) + \dots + 1.14(1)(1) + -0.11(1)(1) + -0.18(1)(1) + 0.38(1)(1)(1) + \dots$$

• Decompose the function in terms of effects of sets of inputs: polynomial

 $f(\mathbf{m}) = 0.91$

• Decompose the function in terms of effects of sets of inputs: polynomial

$$f(\mathbf{m}) = -0.44(0) + -0.96(1) + 0.06(1) + \dots + 1.14(0)(1) + -0.11(0)(1) + -0.18(1)(1) + 0.38(0)(1)(1) + \dots$$

13

• Decompose the function in terms of effects of sets of inputs: polynomial

 $f(\mathbf{m}) = -0.93$

14

"Signal" Model - Structure of Explainable Representations

Theorems

Theorem 1. (Noiseless Decoding) When there are K non-zero interactions chosen uniformly at random from all 2^n interaction, with $K = O(2^{n\delta})$ for $\delta < 1/3$ our algorithm exactly computes the Mobius transform:

- with sample complexity O(Kn) and
- with time $O(Kn^2)$

with probability 1 - O(1/K).

Theorem 2. (Robust Low-Decoding, Informal) When there are K nonzero interactions chosen uniformly over all $|\mathbf{k}| \leq t$, with $t = \Theta(n^{\alpha})$, $\alpha \leq 0.407$ our algorithm computes the Mobius transform:

- with sample complexity $O(Kt \log(n))$ and
- with time $O(K \operatorname{poly}(n))$

with probability 1 - O(1/K) with any fixed SNR.

Step 1 - Subsampling for Optimal Aliasing/Hashing

• **Inescapable fact** of signal processing (Nyquist Sampling Theorem):

Step 2: Group Testing

- Originally proposed by Dorfman (1940s)
- Finds efficient ways to test soldiers for syphilis
- Pooling test allows you to identify infected individuals with fewer tests

Step 2: Group Testing

- Originally proposed by Dorfman (1940s)
- Finds efficient ways to test soldiers for syphilis
- Pooling test allows you to identify infected individuals with fewer tests

t important words n total words

Step 3: Message Passing - (Peeling Decoder)

Conclusion

- Explaining deep models can be cast as functional decomposition
- Aliasing, Group Testing and Message Passing play a central role.

- Lots of open problems:
 - How do we improve robustness in real-world models?
 - Can we leverage white-box access to the model?
 - Can we exploit the connection between attention and Mobius transform?