Quasi-Bayes meets Vines

David Huk, Yuanhe Zhang, Mark Steel, Ritabrata Dutta

Department of Statistics University of Warwick

Density estimation with small and high-dimensional data

Density estimation with small and high-dimensional data

• **10-64 Dimensions**

Density estimation with small and high-dimensional data

 $p_{(n)}(x|x_{1:n})$

Predictive density

$$
p_{(n)}(x|x_{1:n}) = p_{(n-1)}(x|x_{1:n-1})
$$

$$
p(n)(x|x_{1:n}) = p(n-1)(x|x_{1:n-1})
$$

Now predictive density
Old predictive density

$$
p_{(n)}(x|x_{1:n}) = p_{(n-1)}(x|x_{1:n-1}) \cdot c_{(n)}(P_{(n-1)}(x), P_{(n-1)}(x_n))
$$

New predictive density
old predictive density
Divariate copula update

$$
p_{(n)}(x|x_{1:n}) = p_{(n-1)}(x|x_{1:n-1}) \cdot c_{(n)}(P_{(n-1)}(x), P_{(n-1)}(x_n))
$$

New predictive density
old predictive density
Divariate copula update

Hahn *et. al* (2018) + Fong *et. al* (2023): Recursive Bayesian Predictive (**R-BP**):

$$
p_{(n)}(x|x_{1:n}) = p_{(n-1)}(x|x_{1:n-1}) \cdot c_{(n)} (P_{(n-1)}(x), P_{(n-1)}(x_n))
$$

New predictive density
olod predictive density
Bivariate copula update

Nonparametric No need for MCMC

Quasi-Bayesian (nice Bayesian properties)

Very fast density evaluation and sampling

Hahn *et. al* (2018) + Fong *et. al* (2023): Recursive Bayesian Predictive (**R-BP**):

$$
p_{(n)}(x|x_{1:n}) = p_{(n-1)}(x|x_{1:n-1}) \cdot c_{(n)}(P_{(n-1)}(x), P_{(n-1)}(x_n))
$$

New predictive density
old predictive density
Divariate copula update

Nonparametric Quasi-Bayesian (nice Bayesian properties) **Very fast density evaluation and sampling**

No need for MCMC Extensions to multivariate settings are non-trivial

Restrictive assumptions on dependence structure

Computed sequentially with the dimension

Our solution: even more copulas!

$$
\mathbf{p}_{(n)}(x^1,\ldots,x^d)
$$

Our solution: even more copulas!

$$
\mathbf{p}_{(n)}(x^1,\ldots,x^d) = p^1_{(n)}(x^1)\cdot\ldots\cdot p^d_{(n)}(x^d)\cdot\mathbf{c}_{(n)}(P^1_{(n)}(x^1),\ldots,P^d_{(n)}(x^d))
$$

Joint

Our solution: even more copulas!

$$
\mathbf{p}_{(n)}(x^1, \dots, x^d) = p^1_{(n)}(x^1) \cdot \left[\cdot \right] \cdot \left[p^d_{(n)}(x^d) \cdot \mathbf{c}_{(n)}(P^1_{(n)}(x^1), \dots, P^d_{(n)}(x^d)) \right]
$$

Joint
Marginal
Marginal

Our solution: even more copulas!

$$
\mathbf{p}_{(n)}(x^1,\ldots,x^d)=\begin{bmatrix}p^1_{(n)}(x^1)\\ \vdots\\ \text{Marginal}\end{bmatrix}\cdot \begin{bmatrix}p^d_{(n)}(x^d)\\ \text{Marginal}\end{bmatrix}\cdot \begin{bmatrix} \mathbf{c}_{(n)}(P^1_{(n)}(x^1),\ldots,P^d_{(n)}(x^d))\\ \text{High-dimensional copula}\end{bmatrix}
$$

Our solution: even more copulas!

Use **Sklar's Theorem** to split the joint predictive density:

$$
\mathbf{p}_{(n)}(x^1,\ldots,x^d)=\begin{bmatrix}p^1_{(n)}(x^1)\\ \vdots\\ \text{Marginal}\end{bmatrix}\cdot \left[\left\|\cdot\right\| \cdot \begin{bmatrix}p^d_{(n)}(x^d)\\ \text{Marginal}\end{bmatrix}\cdot \begin{bmatrix} \mathbf{c}_{(n)}(P^1_{(n)}(x^1),\ldots,P^d_{(n)}(x^d))\\ \text{High-dimensional copula}\end{bmatrix}\right]
$$

Obtain **simple** recursive update:

$$
\frac{\mathbf{p}_{(m)}(\mathbf{x})}{\mathbf{p}_{(m-1)}(\mathbf{x})} =
$$

Our solution: even more copulas!

Use **Sklar's Theorem** to split the joint predictive density:

$$
\mathbf{p}_{(n)}(x^1,\ldots,x^d)=\begin{bmatrix}p^1_{(n)}(x^1)\\ \vdots\\ \text{Marginal}\end{bmatrix}\cdot \left\lbrack \cdot \left\lbrack \cdot \right\rbrack \cdot \begin{bmatrix}p^d_{(n)}(x^d)\\ \text{Marginal}\end{bmatrix} \cdot \begin{bmatrix} \mathbf{c}_{(n)}(P^1_{(n)}(x^1),\ldots,P^d_{(n)}(x^d))\\ \text{High-dimensional copula} \end{bmatrix} \right\rbrack
$$

Obtain **simple** recursive update:

$$
\frac{\mathbf{p}_{(m)}(\mathbf{x})}{\mathbf{p}_{(m-1)}(\mathbf{x})} = \underbrace{\left[\prod_{i=1}^d \left\{\frac{p_{(m)}^i(x^i)}{p_{(m-1)}^i(x^i)}\right\}}_{\text{Independent recursions}}\right] \cdot \underbrace{\left[\frac{\mathbf{c}_{(m)}\left(P_{(m)}^1(x^1), \dots, P_{(m)}^d(x^d)\right)}{\mathbf{c}_{(m-1)}\left(P_{(m-1)}^1(x^1), \dots, P_{(m-1)}^d(x^d)\right)}\right]}_{\text{recursion on copulas}}
$$

Benefits of even more copulas

Benefits of even more copulas

Known univariate R-BP recursion

 $= p_{(n-1)}(x|x_{1:n-1}) \cdot c_{(n)}(P_{(n-1)}(x), P_{(n-1)}(x_n))$ $p_{(n)}(x|x_{1:n})$ **New predictive density Old predictive density Bivariate copula update** Very **simple** and **fast**

Benefits of even more copulas

Known univariate R-BP recursion

 $= p_{(n-1)}(x|x_{1:n-1}) \cdot c_{(n)}(P_{(n-1)}(x), P_{(n-1)}(x_n))$ $p_{(n)}(x|x_{1:n})$ **Old predictive density Bivariate copula update New predictive density**

Each **marginal** recursion is done in **parallel**

 $p_{(n)}(x|x_{1:n})$

New predictive density

Benefits of even more copulas

Bivariate copula update

Known univariate R-BP recursion

Each **marginal** recursion is done in **parallel**

 $= p_{(n-1)}(x|x_{1:n-1}) \cdot c_{(n)}(P_{(n-1)}(x), P_{(n-1)}(x_n))$

Very **simple** and **fast**

Old predictive density

- Only interested in the **final** predictive density
- Copula recursion is left implicit.

Only fit a **single** copula at **final** step Use a **vine copula model**

Benefits of even more copulas

- Only interested in the **final** predictive density
- Copula recursion is left implicit.

Only fit a **single** copula at **final** step Use a **vine copula model**

No restrictive assumptions needed!

Known univariate R-BP recursion

 $= p_{(n-1)}(x|x_{1:n-1}) \cdot c_{(n)}(P_{(n-1)}(x), P_{(n-1)}(x_n))$ $p_{(n)}(x|x_{1:n})$ **Old predictive density Bivariate copula update New predictive density**

Very **simple** and **fast**

Each **marginal** recursion is done in **parallel**

Final model: The Quasi-Bayesian Vine

Final model: The Quasi-Bayesian Vine

Marginal convergence

rate: $\mathcal{O}_p\left(n^{-1/2}\right)$

Final model: The Quasi-Bayesian Vine

Marginal convergence rate: $\mathcal{O}_p\left(n^{-1/2}\right)$

Copula convergence rate:

 $\mathcal{O}_p(n^{-1/3})$

for certain dependence structures only.

Experiments

Experiments

Regression

Classification

Summary and future directions

Drop by **Poster Session 6,** Friday 13th Chat & collaborate!

Summary and future directions

In a Quasi-Bayesian framework, copulas are a useful tool for obtaining:

- More **general** models.
- Suitable for **parallelisation.**
- Effective on **high-dimensional data**.

Drop by **Poster Session 6,** Friday 13th Chat & collaborate!

Summary and future directions

In a Quasi-Bayesian framework, copulas are a useful tool for obtaining:

- More **general** models.
- Suitable for **parallelisation.**
- Effective on **high-dimensional data**.

Future directions include:

- Using more **effective copula** models.
- Applying the QB-Vine on dependent data such as in **time series, weather** and **RL**.
- Integrate **new** Quasi-Bayesian methods.

Drop by **Poster Session 6,** Friday 13th Chat & collaborate!

Summary and future directions

In a Quasi-Bayesian framework, copulas are a useful tool for obtaining:

- More **general** models.
- Suitable for **parallelisation.**
- Effective on **high-dimensional data**.

Future directions include:

- Using more **effective copula** models.
- Applying the QB-Vine on dependent data such as in **time series, weather** and **RL**.
- Integrate new Quasi-Bayesian methods. **Paper and more!**

Drop by **Poster Session 6,** Friday 13th Chat & collaborate!

https://warwick.ac.uk/fac/sci/statistics/staff/research_students/huk