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Recursive Quasi-Bayesian prediction

New predictive density Old predictive density Bivariate copula update

Hahn et. al (2018) + Fong et. al (2023): Recursive Bayesian Predictive (R-BP):

Nonparametric

Quasi-Bayesian (nice Bayesian properties)

Very fast density evaluation and sampling 

Existing work

No need for MCMC Extensions to multivariate settings are non-trivial

Restrictive assumptions on dependence structure

Computed sequentially with the dimension
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Benefits of even more copulas

Known univariate R-BP recursion

Very simple and fast

Each marginal recursion is done in parallel

• Only interested in the final predictive density

• Copula recursion is left implicit.

Only fit a single copula at final step
Use a vine copula model

No restrictive assumptions needed!

Our paper
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Final model: The Quasi-Bayesian Vine
Our paper

Marginal convergence 
rate:

Copula convergence rate:

for certain dependence 
structures only.
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In a Quasi-Bayesian framework, 
copulas are a useful tool for obtaining:
• More general models.
• Suitable for parallelisation. 
• Effective on high-dimensional data.

Future directions include:
• Using more effective copula models.
• Applying the QB-Vine on dependent data 

such as in time series, weather and RL.
• Integrate new Quasi-Bayesian methods. Paper and more!

https://warwick.ac.uk/fac/sci/statistics/staff/research_students/huk

Drop by Poster Session 6, Friday 13th 
Chat & collaborate!
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