Quasi-Bayes meets Vines

David Huk, Yuanhe Zhang, Mark Steel, Ritabrata Dutta

Department of Statistics University of Warwick

Density estimation with small and high-dimensional data

Density estimation with small and high-dimensional data

10-64 Dimensions

Density estimation with small and high-dimensional data

Non-parametric Bayesian prediction

$$p_{(n)}(x|x_{1:n})$$

Predictive density

$$p_{(n)}(x|x_{1:n}) = p_{(n-1)}(x|x_{1:n-1})$$

$$p_{(n)}(x|x_{1:n}) = p_{(n-1)}(x|x_{1:n-1}) \cdot \\ \text{ Did predictive density } Update term$$

$$p_{(n)}(x|x_{1:n}) = p_{(n-1)}(x|x_{1:n-1}) \cdot c_{(n)}\left(P_{(n-1)}(x), P_{(n-1)}(x_n)\right)$$

New predictive density Old predictive density Bivariate copula update

$$p_{(n)}(x|x_{1:n}) = p_{(n-1)}(x|x_{1:n-1}) \cdot c_{(n)}\left(P_{(n-1)}(x), P_{(n-1)}(x_n)\right)$$

New predictive density Old predictive density Bivariate copula update

Hahn et. al (2018) + Fong et. al (2023): Recursive Bayesian Predictive (**R-BP**):

$$p_{(n)}(x|x_{1:n}) = p_{(n-1)}(x|x_{1:n-1}) \cdot c_{(n)}\left(P_{(n-1)}(x), P_{(n-1)}(x_n)\right)$$

New predictive density Old predictive density Bivariate copula update

No need for MCMC Nonparametric

Quasi-Bayesian (nice Bayesian properties)

Very fast density evaluation and sampling

Hahn et. al (2018) + Fong et. al (2023): Recursive Bayesian Predictive (**R-BP**):

$$p_{(n)}(x|x_{1:n}) = p_{(n-1)}(x|x_{1:n-1}) \cdot c_{(n)}\left(P_{(n-1)}(x), P_{(n-1)}(x_n)\right)$$

New predictive density Old predictive density Bivariate copula update

No need for MCMC
 Nonparametric
 Quasi-Bayesian (nice Bayesian properties)
 Very fast density evaluation and sampling

- Extensions to multivariate settings are non-trivial
- *
 - **Restrictive assumptions on dependence structure**

Computed sequentially with the dimension

Our solution: even more copulas!

Use **Sklar's Theorem** to split the joint predictive density:

 $\mathbf{p}_{(n)}(x^1,\ldots,x^d)$

Our solution: even more copulas!

Use **Sklar's Theorem** to split the joint predictive density:

$$\mathbf{p}_{(n)}(x^1, \dots, x^d) = p_{(n)}^1(x^1) \cdot \dots \cdot p_{(n)}^d(x^d) \cdot \mathbf{c}_{(n)}(P_{(n)}^1(x^1), \dots, P_{(n)}^d(x^d))$$

Joint

Our solution: even more copulas!

Use **Sklar's Theorem** to split the joint predictive density:

$$\mathbf{p}_{(n)}(x^1,\ldots,x^d) = \begin{array}{c} p_{(n)}^1(x^1) \\ \mathbf{p}_{(n)}(x^1) \\ \mathbf{Marginal} \end{array} \cdot \begin{array}{c} \ldots \\ p_{(n)}^d(x^d) \\ \mathbf{Marginal} \end{array} \cdot \begin{array}{c} \mathbf{c}_{(n)}(P_{(n)}^1(x^1),\ldots,P_{(n)}^d(x^d)) \\ \mathbf{Marginal} \end{array}$$

Our solution: even more copulas!

Use **Sklar's Theorem** to split the joint predictive density:

$$\mathbf{p}_{(n)}(x^1, \dots, x^d) = \begin{array}{c} p_{(n)}^1(x^1) \\ \text{Joint} \end{array} \cdot \dots \cdot \begin{array}{c} p_{(n)}^d(x^d) \\ \text{Marginal} \end{array} \cdot \begin{array}{c} \mathbf{c}_{(n)}(P_{(n)}^1(x^1), \dots, P_{(n)}^d(x^d)) \\ \text{High-dimensional copula} \end{array}$$

Our solution: even more copulas!

Use **Sklar's Theorem** to split the joint predictive density:

$$\mathbf{p}_{(n)}(x^1, \dots, x^d) = \begin{array}{c} p_{(n)}^1(x^1) \\ \mathbf{p}_{(n)}(x^1) \\ \mathbf{Marginal} \end{array} \cdot \begin{array}{c} \dots \cdot \begin{array}{c} p_{(n)}^d(x^d) \\ \mathbf{Marginal} \end{array} \cdot \begin{array}{c} \mathbf{c}_{(n)}(P_{(n)}^1(x^1), \dots, P_{(n)}^d(x^d)) \\ \mathbf{High-dimensional \ copula} \end{array}$$

Obtain **simple** recursive update:

$$\frac{\mathbf{p}_{(m)}(\mathbf{x})}{\mathbf{p}_{(m-1)}(\mathbf{x})} = Update term$$

Our solution: even more copulas!

Use **Sklar's Theorem** to split the joint predictive density:

$$\mathbf{p}_{(n)}(x^1, \dots, x^d) = \begin{bmatrix} p_{(n)}^1(x^1) \\ \mathbf{p}_{(n)}(x^1) \\ \mathbf{Marginal} \end{bmatrix} \cdot \dots \cdot \begin{bmatrix} p_{(n)}^d(x^d) \\ \mathbf{Marginal} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{c}_{(n)}(P_{(n)}^1(x^1), \dots, P_{(n)}^d(x^d)) \\ \mathbf{High-dimensional \, copula} \end{bmatrix}$$

Obtain **simple** recursive update:

$$\frac{\mathbf{p}_{(m)}(\mathbf{x})}{\mathbf{p}_{(m-1)}(\mathbf{x})} = \underbrace{\prod_{i=1}^{d} \left\{ \frac{p_{(m)}^{i}(x^{i})}{p_{(m-1)}^{i}(x^{i})} \right\}}_{\text{Independent recursions}} \cdot \underbrace{\frac{\mathbf{c}_{(m)} \left(P_{(m)}^{1}(x^{1}), \dots, P_{(m)}^{d}(x^{d}) \right)}{\mathbf{c}_{(m-1)} \left(P_{(m-1)}^{1}(x^{1}), \dots, P_{(m-1)}^{d}(x^{d}) \right)}}_{\text{recursion on copulas}}$$

Benefits of even more copulas

Benefits of even more copulas

Known univariate R-BP recursion

 $p_{(n)}(x|x_{1:n}) = p_{(n-1)}(x|x_{1:n-1}) \cdot c_{(n)}\left(P_{(n-1)}(x), P_{(n-1)}(x_n)\right)$ New predictive density Bivariate copula update
Very simple and fast

Benefits of even more copulas

Known univariate R-BP recursion

 $\begin{array}{c} p_{(n)}(x|x_{1:n}) \\ \hline \\ \text{New predictive density} \end{array} = \begin{array}{c} p_{(n-1)}(x|x_{1:n-1}) \\ \hline \\ \text{Old predictive density} \end{array} \\ \cdot c_{(n)} \left(P_{(n-1)}(x), P_{(n-1)}(x_n) \right) \\ \hline \\ \hline \\ \text{Bivariate copula update} \end{array}$

Very **simple** and **fast**

Each marginal recursion is done in parallel

Benefits of even more copulas

- Only interested in the **final** predictive density
 - Copula recursion is left implicit.

Only fit a **single** copula at **final** step Use a **vine copula model**

Known univariate R-BP recursion

 $p_{(n)}(x|x_{1:n}) = p_{(n-1)}(x|x_{1:n-1}) \cdot c_{(n)} \left(P_{(n-1)}(x), P_{(n-1)}(x_n)\right)$ New predictive density Bivariate copula update

Very **simple** and **fast**

Each marginal recursion is done in parallel

 $p_{(n)}(x|x_{1:n})$

New predictive density

Benefits of even more copulas

Bivariate copula update

Known univariate R-BP recursion

Old predictive density

Very **simple** and **fast**

 $= p_{(n-1)}(x|x_{1:n-1}) \cdot c_{(n)} \left(P_{(n-1)}(x), P_{(n-1)}(x_n) \right)$

Each marginal recursion is done in parallel

$$\left. \left. \left. \begin{array}{c} \mathbf{c}_{(m)} \left(P_{(m)}^{1}(x^{1}), \dots, P_{(m)}^{d}(x^{d}) \right) \\ \mathbf{c}_{(m-1)} \left(P_{(m-1)}^{1}(x^{1}), \dots, P_{(m-1)}^{d}(x^{d}) \right) \\ \end{array} \right. \right. \\ \left. \begin{array}{c} \mathbf{b}_{m} \\ \mathbf{b$$

- Only interested in the **final** predictive density
- Copula recursion is left implicit.

Only fit a **single** copula at **final** step Use a **vine copula model**

No restrictive assumptions needed!

Final model: The Quasi-Bayesian Vine

Final model: The Quasi-Bayesian Vine

Marginal convergence

rate: $\mathcal{O}_p\left(n^{-1/2}\right)$

Final model: The Quasi-Bayesian Vine

Marginal convergence rate: $\mathcal{O}_p\left(n^{-1/2}\right)$

Copula convergence rate:

 $\mathcal{O}_p(n^{-1/3})$

for certain dependence structures only.

Experiments

Experiments

Digits dataset

n/d	WINE 89/12	BREAST 97/14	PARKIN 97/16	IONO 175/30	BOSTON 506/13	
KDE	13.69 ± 0.00	10.45 ± 0.24	12.83 ± 0.27	32.06 ± 0.00	8.34 ± 0.00	
DPMM (Diag)	17.46 ± 0.60	16.26 ± 0.71	22.28 ± 0.66	$35.30_{\pm 1.28}$	7.64 ± 0.09	
DPMM (Full)	32.88 ± 0.82	26.67 ± 1.32	39.95 ± 1.56	86.18 ± 10.22	9.45 ± 0.43	
MAF	39.60 ± 1.41	10.13 ± 0.40	11.76 ± 0.45	140.09 ± 4.03	56.01 ± 27.74	
RQ-NSF	$38.34_{\pm 0.63}$	$26.41_{\pm 0.57}$	$31.26_{\pm 0.31}$	54.49 ± 0.65	$-2.20_{\pm 0.11}$	
PRticle Filter	$23.89, \pm 0.93$	$25.98_{\pm 1.06}$	$34.79_{\pm 3.95}$	$79.22_{\pm 9.87}$	$27.18_{\pm 3.12}$	
R-BP	13.57 ± 0.04	7.45 ± 0.02	9.15 ± 0.04	21.15 ± 0.04	4.56 ± 0.04	
R_d -BP	13.32 ± 0.01	6.12 ± 0.05	7.52 ± 0.05	19.82 ± 0.08	-13.50 ± 0.59	
AR-BP	$13.45_{\pm 0.05}$	$6.18_{\pm 0.05}$	$8.29_{\pm 0.11}$	$17.16_{\pm 0.25}$	$-0.45_{\pm 0.77}$	
AR_d -BP	$13.22_{\pm 0.04}$	$6.11_{\pm 0.04}$	7.21 ± 0.12	16.48 ± 0.26	-14.75 ± 0.89	
ARnet-BP	$14.41_{\pm 0.11}$	6.87 ± 0.23	8.29 ± 0.17	15.32 ± 0.35	$-5.71_{\pm 0.62}$	
QB-Vine	13.76 ± 0.13	$4.67_{\pm 0.31}$	$4.93{\scriptstyle \pm 0.20}$	$-16.08_{\pm 2.12}$	$-31.04_{\pm 1.02}$	

Regression

Classification

	Regression			Classification	
n/d	BOSTON 506/13	CONCR 1,030/8	DIAB 442/10	IONO 351/33	PARKIN 195/22
Linear	0.87 ± 0.03	$0.99_{\pm 0.01}$	$1.07_{\pm 0.01}$	$0.33_{\pm 0.01}$	0.38 ± 0.01
GP	0.42 ± 0.08	$0.36_{\pm 0.02}$	1.06 ± 0.02	$0.30_{\pm 0.02}$	$0.42_{\pm 0.02}$
MLP	$1.42_{\pm 1.01}$	$2.01_{\pm 0.98}$	$3.32_{\pm 4.05}$	$0.26_{\pm 0.05}$	$0.31_{\pm 0.02}$
R-BP	0.76 ± 0.09	$0.87_{\pm 0.03}$	1.05 ± 0.03	$0.26_{\pm 0.01}$	0.37 ± 0.01
R_d -BP	0.40 ± 0.03	0.42 ± 0.00	1.00 ± 0.02	$0.34_{\pm 0.02}$	0.27 ± 0.03
AR-BP	$0.52_{\pm 0.13}$	$0.42_{\pm 0.01}$	$1.06_{\pm 0.02}$	$0.21_{\pm 0.02}$	$0.29_{\pm 0.02}$
AR_d -BP	$0.37_{\pm 0.10}$	$0.39_{\pm 0.01}$	0.99 ± 0.02	$0.20_{\pm 0.02}$	0.28 ± 0.03
ARnet-BP	$0.45_{\pm 0.11}$	$-0.03{\scriptstyle \pm 0.00}$	$1.41_{\pm 0.07}$	$0.24_{\pm 0.04}$	$0.26_{\pm0.04}$
QB-Vine	$-0.81_{\pm 1.26}$	$0.54_{\pm 0.34}$	$0.87_{\pm 0.20}$	$-1.85_{\pm 1.16}$	$-0.76_{\pm0.28}$

Summary and future directions

Drop by **Poster Session 6,** Friday 13th Chat & collaborate!

Summary and future directions

In a Quasi-Bayesian framework, copulas are a useful tool for obtaining:

- More **general** models.
- Suitable for **parallelisation**.
- Effective on high-dimensional data.

Drop by **Poster Session 6,** Friday 13th Chat & collaborate!

Summary and future directions

In a Quasi-Bayesian framework, copulas are a useful tool for obtaining:

- More **general** models.
- Suitable for **parallelisation**.
- Effective on high-dimensional data.

Future directions include:

- Using more effective copula models.
- Applying the QB-Vine on dependent data such as in **time series, weather** and **RL**.
- Integrate **new** Quasi-Bayesian methods.

Drop by **Poster Session 6,** Friday 13th Chat & collaborate!

Summary and future directions

In a Quasi-Bayesian framework, copulas are a useful tool for obtaining:

- More general models.
- Suitable for **parallelisation**.
- Effective on high-dimensional data.

Future directions include:

- Using more **effective copula** models.
- Applying the QB-Vine on dependent data such as in **time series, weather** and **RL**.
- Integrate new Quasi-Bayesian methods.

Drop by **Poster Session 6,** Friday 13th Chat & collaborate!

Paper and more!

https://warwick.ac.uk/fac/sci/statistics/staff/research_students/huk