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Motivation Prompt Templates to LLMs Experiments
= Problem: Prompt |earning on |arge 3D models often boosts point cloud recogniﬁon Question Answering Question Answering Caption Generation Making Sentences Base-to-new genera“zaﬁorL
performance but harms generalization. What does a(n) {class}| What are the identifying | Please describe a(n) Make a meaningful sentence (a) Average over 5 datasets (b) ModelNet40 (¢c) S-PB_T50_RS
= Objective: To enhance downstream 3D tasks without compromising generalization by point cloud look like? | |features of a(n){class} {class} point cloud with the following words:
introducing a regulation framework for prompt learning on large 3D models. point cloud? with details {class}, point cloud Method Base ~ New  HM Method Base ~ New  HM Method Base ~ New  HM
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Figure 3. lllustration of diverse questions to LLMs, including GPT-3.5, GPT-4 and PointLLM.
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Acc: - ULIP2 with PT & RC = Prior Approaches: Focus on task-specific improvement on specific tasks for small-size point
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large 3D models, offering substantial generalization gains over baseline methods in 3DDG.
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Evaluation Benchmarks

Figure 1. Motivation of our research: to promote the performances on downstream 3D tasks while maintaining Figure 4. Base-to-new generalization comparison for representative large 3D models based on prompt learning.

= Prior Benchmarks: Limited scale and scope, e.g., only ~10 classes shared between the source
good generalization of large 3D models.

and the target domain in PointDA ans Sim-to-Real.

= Our Contribution: Designed diverse and challenging benchmarks, which contain up to 216 Cross-dataset generalization.

Highlights classes, to evaluate the generalization ability of large multi-modal 3D models. — — — -
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showing superior generalization and robustness to corrupted data.

Methodology

Our framework consists of three regulation constraints: Mutual Agreement Constraint (MAC),

classes in five point cloud datasets (e.g., S-PB_T50 RS, ShapeNetCoreV?2).

= Purpose: Measures the ability to generalize without direct exposure to new classes during
training.

Cross-Dataset Generalization Benchmark

Figure 5. Comparison of OOD generalization in cross-dataset benchmark.

Few-shot generalization.
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https.//github.com/auniquesun/Point-PRC
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