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Motivation

Problem: Prompt learning on large 3D models often boosts point cloud recognition

performance but harms generalization.

Objective: To enhance downstream 3D tasks without compromising generalization by

introducing a regulation framework for prompt learning on large 3D models.
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Figure 1. Motivation of our research: to promote the performances on downstream 3D tasks while maintaining

good generalization of large 3D models.

Highlights

A Regulation Framework: A plug-and-play framework with constraints (mutual agreement,

text diversity, and model ensemble) to align prompt learning with general knowledge,

improving both specific task performance and generalization.

Three New Benchmarks: Created three benchmarks—base-to-new, cross-dataset, and

few-shot—to test 3D domain generalization comprehensively.

Stunning Results: Consistently increased accuracy across various models and datasets,

showing superior generalization and robustness to corrupted data.

Methodology

Our framework consists of three regulation constraints: Mutual Agreement Constraint (MAC),

Text Diversity Constraint (TDC), Model Ensemble Constraint (MEC)
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Figure 2. The overall architecture of our point regulation constraint framework, Point-PRC.

Prompt Templates to LLMs

What does a(n) {class}
point cloud look like?

What are the identifying
features of  a(n) {class}
point cloud?

Please describe a(n)
{class} point cloud
with details

Make a meaningful sentence
with the following words:
{class}, point cloud

Question Answering Question Answering Caption Generation Making Sentences

Figure 3. Illustration of diverse questions to LLMs, including GPT-3.5, GPT-4 and PointLLM.

Comparison with RelatedWork

Methodology

Prior Approaches: Focus on task-specific improvement on specific tasks for small-size point

encoders but lack systematic design for generalization in large 3D models.

Our Contribution: First framework to integrate regulatory constraints in prompt learning for

large 3D models, offering substantial generalization gains over baseline methods in 3DDG.

Evaluation Benchmarks

Prior Benchmarks: Limited scale and scope, e.g., only ∼10 classes shared between the source

and the target domain in PointDA ans Sim-to-Real.

Our Contribution: Designed diverse and challenging benchmarks, which contain up to 216

classes, to evaluate the generalization ability of large multi-modal 3D models.

New 3DDG Benchmarks

Base-to-New Class Generalization Benchmark

Feature: Tests adaptability from familiar to unseen classes within the same dataset.

Description: The model is trained on a set of base classes and evaluated on unseen new

classes in five point cloud datasets (e.g., S-PB_T50_RS, ShapeNetCoreV2).

Purpose: Measures the ability to generalize without direct exposure to new classes during

training.

Cross-Dataset Generalization Benchmark

Feature: Assesses transferability across different datasets and includes out-of-distribution

(OOD) generalization and robustness to data corruption.

Description: The model learns from a source dataset (e.g., ShapeNetV2) and is tested on

entirely different target datasets. It’s also evaluated on corrupted data to test robustness.

Purpose: Evaluates resilience to domain shifts, different 3D object sets, and common

noise/corruptions in real-world point cloud data.

Few-Shot Generalization Benchmark

Feature: Tests model performance with limited labeled examples.

Description: Models are trained with very few samples per class (e.g., 1, 2, 4, 8, or 16 shots)

and tested on a full test set.

Purpose: Demonstrates the capability to generalize in low-data regimes, crucial for

applications with limited labeled data.

Experiments

Base-to-new generalization.

Table 1: Base-to-new class generalization comparison for representative large 3D models based
on prompt learning. Each number here is the mean of three runnings. Base: base class accuracy
(in %, same below). New: new class accuracy. HM: harmonic mean of base and new class accuracy.
+RC demonstrates the models with our regulation constraint framework.

(a) Average over 5 datasets

Method Base New HM

P-CLIP [76] 75.66 23.45 35.80
P-CLIP2 [90] 74.11 37.84 50.10

ULIP [71] 77.32 49.01 59.99
+RC(Ours) 82.19 61.93 70.64

ULIP-2 [72] 77.91 67.91 72.57
+RC(Ours) 83.18 76.10 79.48

(b) ModelNet40

Method Base New HM

P-CLIP [76] 93.23 20.22 33.23
P-CLIP2 [90] 93.98 45.21 61.05

ULIP [71] 92.80 50.07 65.05
+RC(Ours) 95.03 55.27 69.89

ULIP-2 [72] 91.77 56.47 69.92
+RC(Ours) 95.30 64.83 77.17

(c) S-PB_T50_RS

Method Base New HM

P-CLIP [76] 61.25 19.87 30.01
P-CLIP2 [90] 56.84 29.92 39.20

ULIP [71] 56.73 25.80 35.47
+RC(Ours) 64.20 49.17 55.69

ULIP-2 [72] 66.40 66.47 66.43
+RC(Ours) 73.67 74.27 73.97

(d) S-OBJ_BG

Method Base New HM

P-CLIP [76] 72.82 23.00 34.96
P-CLIP2 [90] 70.07 35.08 46.75

ULIP [71] 73.20 47.17 57.37
+RC(Ours) 79.47 55.20 65.15

ULIP-2 [72] 77.00 83.27 80.01
+RC(Ours) 80.10 88.93 84.28

(e) S-OBJ_ONLY

Method Base New HM

P-CLIP [76] 76.23 20.23 31.97
P-CLIP2 [90] 71.40 44.39 54.74

ULIP [71] 74.13 50.80 60.29
+RC(Ours) 79.23 65.93 71.97

ULIP-2 [72] 78.60 76.27 77.42
+RC(Ours) 83.60 81.10 82.33

(f) ShapeNetCoreV2

Method Base New HM

P-CLIP [76] 74.78 33.92 46.61
P-CLIP2 [90] 78.27 34.58 47.97

ULIP [71] 89.73 71.20 79.40
+RC(Ours) 93.03 84.10 88.34

ULIP-2 [72] 75.80 57.07 65.38
+RC(Ours) 83.23 71.37 76.85

4.2 Base-to-new Class Generalization

In this benchmark, models are learned on the base classes and evaluated on the test sets of base
and novel classes. In addition to ULIP and ULIP-2, we also implement the same prompt tuning for
PointCLIP [76] (P-CLIP) and PointCLIP V2 [90] (P-CLIP2) for comparison, shown in Tab. 1.

Loss of Generalization in P-CLIP and ULIP Series. We observe notable gaps occur between base
and new class recognition accuracy of P-CLIP, P-CLIP2, ULIP, ULIP-2 when prompt tuning without
the proposed regulation constraints. For instance, P-CLIP2 achieves 93.98% accuracy on the base
classes of ModelNet40 while dropping by 48.77% absolute points on the whole test set of the new
classes, which even lags behind the zero-shot accuracy of the frozen P-CLIP2 (64.22%). The results
are consistent across five datasets, suggesting the loss of generalization of original models.

Lifting the Generalization by Our Framework. As shown in Tab. 1, the proposed framework
composite of three regulation constraints boosts the unseen class recognition accuracy across different
models and datasets by a clear margin, thanks to the active communication and alignment with the
general knowledge in large 3D models. For example, the improvement of the harmonic mean on
ULIP reaches 10.65% absolute points averaged over 5 datasets.

Lifting the Specific 3D Tasks by Our Framework. Surprisingly, the task-specific performances
are not be hindered by the regulation constraints while enhancing the task-agnostic generalization,
referring to the base class accuracy of ULIP+RC and ULIP-2+RC averaged over 5 datasets, increasing
by 4.87% and 5.27%, respectively.

4.3 Cross-Dataset Generalization

This setting differs from the base-to-new counterpart where the base and new classes belong to the
same dataset. We present the analysis for OOD generalization and data corruption as below, and put
the comparison on Sim-to-Real and PointDA in Appendix.

OOD Generalization demonstrates the models’ transferability to other unseen domains by learning
from an existing domain. To evaluate on this benchmark, we implement the lightweight prompt
learning for ULIP and ULIP-2 then impose the proposed regulation constraints on them. Prompt
learning for P-CLIP [76] and P-CLIP2 [76] with same settings are also implemented for comparison.
The results are reported in Tab. 2 . By wrapping ULIP and ULIP-2 with the devised framework, we
achieve consistent positive gains on each of the five target domains. The average gains over them are
enlarged with increasing ability of ULIP, e.g., +6.20% for ULIP-2 vs. +1.79% for ULIP. Meanwhile,
we notice that the performances on Omni3D [66] are rather limited and the methods here seem not to
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Figure 4. Base-to-new generalization comparison for representative large 3D models based on prompt learning.

Cross-dataset generalization.

Table 2: Comparison of OOD generalization in cross-dataset benchmark. ShapeNetV2 serves as
the source domain and the other five datasets are deployed as the target domain. ShapeNetV2: 55
classes, ModelNet40: 40 classes, SONN: 15 classes, Omni3D: 216 classes. Some common categories
are shared between the source and target domain. Note that Omni3D has much more new 3D object
concepts than others. The last column indicates the average over five target datasets.

Method Source Target Avg.ShapeNetV2 ModelNet40 S-PB_T50_RS S-OBJ_BG S-OBJ_ONLY Omni3D

P-CLIP [76] 67.41(0.09) 33.20(1.86) 15.51(0.58) 18.59(1.40) 22.89(2.32) 0.48(0.17) 22.55(1.54)

P-CLIP2 [90] 68.93(1.43) 54.73(1.48) 39.53(4.22) 34.30(1.28) 25.63(1.16) 8.63(2.52) 32.56(2.13)
+RC(Ours) 69.80(2.86) 55.37(1.78) 39.77(0.45) 34.20(0.54) 24.50(1.26) 10.20(0.40) 32.81(0.89)

ULIP [71] 87.33(0.95) 56.17(1.15) 26.83(2.15) 39.43(2.17) 43.53(1.32) 6.37(0.90) 34.47(1.54)
+RC(Ours) 90.43(0.86) 58.00(0.57) 28.43(0.68) 40.33(0.71) 46.33(1.54) 8.20(0.50) 36.26(0.80)

ULIP-2 [72] 76.70(1.37) 65.27(0.66) 40.07(0.34) 53.80(1.78) 48.53(1.72) 17.27(0.54) 44.99(1.01)
+RC(Ours) 76.70(1.59) 72.10(0.93) 46.77(2.43) 59.03(3.02) 56.27(0.97) 21.80(0.49) 51.19(1.57)

Table 3: Comparison of corruption generalization on ModelNet-C[56] when trained on clean
data. The results are reported for the corruption severity=2 in ModelNet-C.

Method Clean Data Corruption Type Avg.ModelNet Add Global Add Local Drop Global Drop Local Rotate Scale Jitter

P-CLIP [76] 80.97(1.02) 80.97(1.02) 80.97(1.02) 64.95(1.08) 68.31(1.93) 65.75(1.19) 72.04(1.33) 52.09(1.28) 69.30(1.26)
P-CLIP2 [90] 83.49(0.51) 83.49(0.51) 83.49(0.51) 68.85(3.22) 66.67(1.96) 70.13(1.33) 75.68(0.15) 61.21(2.16) 72.79(1.41)

ULIP [71] 82.43(1.25) 82.50(0.99) 82.27(1.17) 80.77(1.03) 65.43(1.02) 72.27(1.56) 74.67(1.58) 45.60(0.65) 71.93(1.14)
+RC(Ours) 83.87(0.34) 83.83(0.40) 83.93(0.19) 81.83(0.52) 67.37(1.72) 79.10(0.36) 76.37(0.09) 41.67(4.79) 73.44(1.15)

ULIP-2 [72] 85.07(0.21) 81.97(0.79) 82.03(0.96) 79.93(0.92) 60.03(1.21) 80.30(0.93) 75.77(0.74) 44.27(2.13) 72.04(1.10)
+RC(Ours) 86.47(0.56) 86.57(0.48) 86.30(0.51) 84.87(0.48) 67.80(1.20) 84.60(0.22) 81.17(1.05) 46.43(2.45) 76.82(0.91)

work, especially for P-CLIP series and ULIP (less than 10% accuracy). This dataset contains a large
vocabulary of real 3D objects (216 categories) and exhibits the long-tail attribute. When transferring
the models that learn from a narrow set of 3D object concepts (55 classes in ShapeNetV2) to Omni3D,
they suffer from new 3D concepts thus perform poorly.

Data Corruption are common in point clouds due to complex geometry, sensor inaccuracy and
processing imprecision. We investigate the generalization of the proposed framework on ModelNet-
C [56], which includes common corruptions, such as dropping some parts or adding global outliers.
The compared methods are same as those in OOD generalization and the results are exhibited in
Tab. 3. Our method not only boosts the recognition accuracy on clean data (+1.44% for ULIP and
+1.40% for ULIP-2), but also strengthen the robustness of representative large 3D models against
collapsed data. By averaging on 7 types of corruption, we receive +1.51% and +4.78% gains for
ULIP and ULIP-2, respectively.

4.4 Few-shot Generalization

In this setting, ULIP and ULIP-2 with (w.) and without (w.o.) our regulation constraints (RC) are
compared. As visualized in Fig. 4, the solid lines of ULIP and ULIP-2 exceed the corresponding
dashed lines by clear margins average over 5 datasets, indicating the devised framework strengthens
the 3DDG capability considerably. The advantages are enlarged especially for the extreme 1-shot
learning, e.g., +8.05% acc. for ULIP and +5.39% acc. for ULIP-2. Note that in some cases, e.g.,
on ModelNet40, ULIP-2 w.o. RC (1-shot, 66.63%) even lags behind zero-shot ULIP-2 (71.23%),
implying that simple prompt tuning disturbs the well-learned representations of ULIP-2. In contrast,
the developed framework brings 2.4% absolute improvements over the zero-shot ULIP-2, obtaining
73.63% acc. under the 1-shot setting.

4.5 Ablation Study

In this section, we examine the effectiveness of several critical components in the proposed framework
via a series of controlled experiments. ULIP-2 is adopted as the baseline and we compare the variants
on the base-to-new benchmark and report the harmonic mean (HM) averaged over 5 datasets.
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Figure 5. Comparison of OOD generalization in cross-dataset benchmark.

Few-shot generalization.
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Figure 6. Comparison of few-shot generalization. The solid and dashed lines represent the models with and
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