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Perceptual Learning and the Framework

Perceptual Learning
• Improving sensory interpretation through learning.

Challenges
 Specificity  vs. Transfer
• Specificity: Limited to trained stimuli.
• Transfer: Generalizes to new stimuli.

Objective:
•  Reconcile specificity and transfer through a dual-

learning framework.
• Task-based Learning: Fast, supports transfer.
• Feature-based Learning: Slow, enhances 

specificity.

From Specificity to Transfer

Specificity Transfer



was found that participants could generalize their enhanced perceptual performances to untrained
conditions, displaying the effect of transfer (red circles in Fig. 1B(ii)).

The above two experiments highlight the importance of the number of training sessions under the
same stimulus condition in inducing the specificity or the transfer effect. It is expected that with
the increased number of training sessions under the same condition, the learning effect should go
from transfer to specificity gradually. Indeed, this was confirmed experimentally in an orientation
discrimination task [26]. In this task, participants underwent different numbers of training sessions
under the same condition, followed by a switch to untrained conditions to measure the extent of
transfer (Fig. 1C(i)). It was found that with the increased number of training sessions under the same
condition, the perceptual performance of participants was improved (the left panel of Fig. 1C(ii)),
whereas the transfer effect was decreased (the right panel of Fig. 1C(ii))

3 The dual-learning model

To reconcile the phenomena of specificity and transfer in perceptual learning, we propose a dual-
learning model. As depicted in Fig. 2, the model consists of three sequential information processing
stages, which are feature extraction, feature-based learning, and task-based learning. We use the
Vernier discrimination task as an example to introduce the model.
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Figure 2: Overview of the dual-learning model. The Vernier discrimination task is used as an
example. A. Feature extraction. It involves using basis functions to transform an image I(x) into
feature representations F

⇤
t (x, ✓), where x and ✓ denote the position and orientation features. B.

Feature-based learning. It refines feature representations to Ft(x, ✓) to reflect the statistical changes
of external inputs. The feedforward connections are updated following the Hebbian learning rule, and
they are strengthened at locations where stimuli are presented excessively, inducing location-specific
changes in feature representations. C. Task-based learning. Using convolutional layers and global
max pooling, it integrates the task-relevant information from feature representations Ft(x, ✓) to make
the decision z

⇤.

3.1 The model structure

Feature Extraction. This models the functions of the retina, the Lateral Geniculate Nucleus (LGN),
and the input layer of V1 in the visual pathway, extracting preliminary features from input images
to form retinotopic feature representations (see Fig. 2A). There is no plasticity at this stage, and
we employ the HyperBF network [37] to model feature extraction. Denote It(x) the input image
presented at trial t and F

⇤
t (x, ✓) the extracted feature representation, which is expressed as:

F
⇤
t (x, ✓) = norm [G(x� x0

, ✓) ⇤ It(x0)] , (1)

where x and ✓ denote the position and orientation feature in the image, respectively. The variable
x0 represents the position of neighboring pixels, used in the convolution operation. The Gabor
function G(x�x0

, ✓) = 1/2exp
⇥
�(x� x0)2/(2�2

g)
⇤
cos [2⇡x0

/�cos(✓) +  ], with �g the standard

4

The dual-learning model reconciles specificity and transfer in perceptual learning through 
three stages:

The Feature-Task Dual-Learning Framework

Feature Extraction:
• Transforms input 

images into basic 
feature 
representations.

Feature-based Learning:
• Specificity à Refines features to 

capture statistical changes.
• Slower à Improves precision with 

repeated exposure.

Task-based Learning: 
• Transfer à Generalizes well across 

different stimuli. 
• Faster à Adapts quickly to new tasks 

by using existing features.



Interplay Between Feature and Task Learning
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Task-based Learning Only: 
Increases accuracy at both trained and untrained 
locations, supporting transfer via max pooling.

Feature-based Learning Only: 
High accuracy at trained location; accuracy drops at 
untrained locations, supporting specificity via refined 
representations.

Feature -Task Dual Learning: 
Initially supports transfer because of fast Task-based 
learning.
Specificity strengthens over time due to slow Feature-
based learning.

Dual-learning framework balances adaptability and precision—Fast Task-based learning 
enables transfer, while Slow Feature-based learning reinforces specificity.

Task-based Only
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Figure 3: Properties of the dual-learning model. A. A Vernier discrimination task. Upper: the training
stimulus. Lower: testing stimuli at three untrained locations. B. Discrimination accuracy vs. training
epochs with only task-based learning on. It displays transfer effects to all untrained locations. C.
Discrimination accuracy vs. training epochs with only feature-based learning on, following the
completion of training in panel B. The model performances at untrained locations drop dramatically,
display the effect of specificity. D. Similarity of feature representations before and after feature-based
learning. Solid lines represent vertically oriented (0�) stimuli used in training, dashed lines represent
diagonally oriented (45�) stimuli, and dotted lines represent horizontally oriented (90�) stimuli. E.
Discrimination accuracy vs. training epochs with both feature-based and task-based learning on. In
panels B and E, the gray lines indicate the number of epochs required to reach 90% accuracy. The
results presented are averaged over 50 repetitions. For more details, see Sec. B in the Appendix.

representations at untrained locations change dramatically. This indicates that feature-based learning
induces location-specific changes in feature representations.

Finally, we analyzed the model performance with both feature-based and task-based learning enabled.
In particular, we set the rate of feature-based learning to be relatively much smaller than that of
task-based learning. Although a direct numerical comparison between the two learning rates is not
meaningful due to differences in their roles and magnitudes, the chosen configuration allows us to
observe a clear distinction in the dynamics of the two learning processes. As shown in Fig. 3E, we
observe that: 1). The combination of feature-based and task-based learning accelerates the training
process at the train location, requiring fewer epochs to reach 90% accuracy compared to using task-
based learning alone (gray line in Fig. 3, mean epochs: task-based learning = 84.7, combined feature-
and task-based learning = 81.3). This difference is statistically significant (t = 3.90, p < 0.001),
based on 50 repetitions for each condition. 2). The training promotes transfer to untrained locations
initially, but as time goes on, the transfer effect decreases, while the specificity effect increases. This
shift reflects that due to different learning rates, task-based learning dominates initially, which induces
transfer; while feature-based learning gradually takes effect, which induces specificity.

4 Reproducing classical findings in perceptual learning

In this section, we used the dual-learning model to reproduce the classical findings in perceptual
learning. We employed a Vernier discrimination task as an example, as this paradigm has been widely
used in psychophysical experiments. In these experiments, the discrimination threshold, defined
as the intensity of stimuli that participants can accurately discriminate with about an 80% success
rate, was used to measure the learning effect. In our simulations, we adjusted the offset between
two vertical orientations in the task to create a series of difficulty levels and chose the offset value
corresponding to 80% model correctness as the threshold (for details, see Sec. C in the Appendix).

6

B C

E

0          20         40         60         80       100      120       140       160       180      200

loc 0 loc 1 loc 2 loc 3

A Input image

Train Test

A
cc

ur
ac

y 
(%

)

Epochs

D 1.0

0.9

0.8

0.7

0.6

0.5

Si
m

ila
rit

y

0          40         80        120        160      200
Epochs

100

90

80

70

60

50

40

100

90

80

70

60

50

40

A
cc

ur
ac

y 
(%

)

ori   0°
ori 45°
ori 90°

100

90

80

70

60

50

40 0          40         80        120        160      200
Epochs

0          40         80        120        160      200
Epochs

Figure 3: Properties of the dual-learning model. A. A Vernier discrimination task. Upper: the training
stimulus. Lower: testing stimuli at three untrained locations. B. Discrimination accuracy vs. training
epochs with only task-based learning on. It displays transfer effects to all untrained locations. C.
Discrimination accuracy vs. training epochs with only feature-based learning on, following the
completion of training in panel B. The model performances at untrained locations drop dramatically,
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learning. Solid lines represent vertically oriented (0�) stimuli used in training, dashed lines represent
diagonally oriented (45�) stimuli, and dotted lines represent horizontally oriented (90�) stimuli. E.
Discrimination accuracy vs. training epochs with both feature-based and task-based learning on. In
panels B and E, the gray lines indicate the number of epochs required to reach 90% accuracy. The
results presented are averaged over 50 repetitions. For more details, see Sec. B in the Appendix.

representations at untrained locations change dramatically. This indicates that feature-based learning
induces location-specific changes in feature representations.

Finally, we analyzed the model performance with both feature-based and task-based learning enabled.
In particular, we set the rate of feature-based learning to be relatively much smaller than that of
task-based learning. Although a direct numerical comparison between the two learning rates is not
meaningful due to differences in their roles and magnitudes, the chosen configuration allows us to
observe a clear distinction in the dynamics of the two learning processes. As shown in Fig. 3E, we
observe that: 1). The combination of feature-based and task-based learning accelerates the training
process at the train location, requiring fewer epochs to reach 90% accuracy compared to using task-
based learning alone (gray line in Fig. 3, mean epochs: task-based learning = 84.7, combined feature-
and task-based learning = 81.3). This difference is statistically significant (t = 3.90, p < 0.001),
based on 50 repetitions for each condition. 2). The training promotes transfer to untrained locations
initially, but as time goes on, the transfer effect decreases, while the specificity effect increases. This
shift reflects that due to different learning rates, task-based learning dominates initially, which induces
transfer; while feature-based learning gradually takes effect, which induces specificity.

4 Reproducing classical findings in perceptual learning

In this section, we used the dual-learning model to reproduce the classical findings in perceptual
learning. We employed a Vernier discrimination task as an example, as this paradigm has been widely
used in psychophysical experiments. In these experiments, the discrimination threshold, defined
as the intensity of stimuli that participants can accurately discriminate with about an 80% success
rate, was used to measure the learning effect. In our simulations, we adjusted the offset between
two vertical orientations in the task to create a series of difficulty levels and chose the offset value
corresponding to 80% model correctness as the threshold (for details, see Sec. C in the Appendix).
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Reproducing Classical Findings 
In the first experiment, we adopted the training paradigm similar to that in [28]. Specifically, we
trained the model with fixed orientation and location (ori1_loc1) and evaluated model performances
across various combinations of orientation and location before and after the training (Fig. 4A).
The results are presented in Fig. 4B, which show that the model exhibits a significantly improved
performance in the trained condition (ori1_loc1, blue diamonds), whereas this improvement is not
transferable to untrained locations (ori1_loc2, light red squares), untrained orientations (ori2_loc1,
medium red triangles), or combinations of untrained location and orientation (ori2_loc2, dark red
circles). Fig. 4C further summarizes the learning improvements under different conditions, showing
good agreement with the experimental data [28]. The results demonstrate that our model successfully
replicates the classical specificity phenomenon observed in perceptual learning.
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Figure 4: Specificity in perceptual learning via condition-specific training. A. A Vernier discrimina-
tion task similar to that in [28]. The visual stimulus used for training (top, loc1_ori1) and an example
of stimuli with the different location and orientation for transfer evaluation (bottom, loc2_ori2). B.
Learning curves and thresholds for pre- and post-testing in different conditions. The threshold at the
trained condition (ori1_loc1, blue diamonds) decreases significantly after training, while thresholds at
untrained conditions (ori1_loc2, light red squares; ori2_loc1, medium red triangles; ori2_loc2, dark
red circles) do not exhibit significant decline. C. Statistical results of training and transfer improve-
ments. They show substantial gain at the trained condition (ori1_loc1, blue bar) and negligible or no
improvement at untrained conditions (ori1_loc2, light red; ori2_loc1, medium red; ori2_loc2, dark
red).

In the second experiment, we adopted the training paradigm similar to that in [34]. Specifically, the
model was trained with stimuli presented at varying locations, either in a random or sequential order,
and the transfer effect was evaluated at an untrained location (Fig. 5A). The results are presented
in Fig. 5B-C, showing that the model’s learning effect is successfully transferred to the untrained
location. Fig. 5D further summarizes the learning improvements when trained across multiple
locations either randomly or sequentially. These results agree well with the experimental data [34],
demonstrating that our model successfully replicates the classical transfer phenomenon in perceptual
learning.

In the third experiment, we adopted a training paradigm similar to that in [26]. Specifically, the
number of training sessions was varied, and the transfer effect was evaluated using a new condition
that combined an untrained location and orientation (Fig. 6A). The results are shown in Fig. 6B. In
the trained condition (left panel), performance thresholds gradually decreased with the increasing
number of training sessions. However, in the untrained condition (right panel), the trend reversed:
the more sessions completed in the trained condition, the higher thresholds were observed in the
untrained condition. Fig. 6C further summarizes the progression of learning improvements during
the training and transfer phases, agreeing well with the experimental data [26]. Thus, our model
successfully replicates the classical phenomenon of transition from transfer to specificity with the
increasing number of training sessions.

In the fourth experiment, we adopted the training paradigm called double training similar to that in
[28]. In this experiment, following the first step training of the classical specificity task as in Fig. 1,
we introduced second step training with stimulus at a new location and orientation. After double
training, we evaluated the model’s transfer performance under conditions untrained in either step.
The results, shown in Fig. 7B, reveal that after double training, the original specificity effect in the
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Figure 5: Transfer in perceptual learning via varied training conditions. A. A Vernier discrimination
task similar to that in [34]. During training, visual stimuli were presented at three distinct locations
with two orientations: horizontal and vertical (top). For transfer evaluation, a single stimulus was
presented at a new, untrained location (bottom), highlighted with a red circle. B. Random training
condition. The learning curve and thresholds for training across multiple conditions randomly.
The threshold at the training conditions (dark blue circles) decreases significantly, and the transfer
condition (red circles) shows a similar decline. C. Rotating training condition. The learning curve
and thresholds for training with stimuli rotating. The threshold at the training conditions (light blue
circles) decreases significantly, and the transfer condition (red circles) shows a similar decline. D.
Summary of learning and transfer improvements in different conditions.

Figure 6: Transition from transfer to specificity with the increased number of training sessions. A. A
Vernier discrimination task similar to that in [26]. Visual stimulus used for training (top, loc1_ori1)
and stimuli for transfer evaluation (bottom, loc2_ori2). B. The learning curves under different
training (left) and transfer (right) conditions. The thresholds are depicted with different colored
curves representing different numbers of training sessions: gray (2 sessions), light red (4 sessions),
medium red (8 sessions), and dark red (12 sessions). C. Summary of transfer improvements with
varied training sessions. Each bar represents the improvement in transfer performance following 2, 4,
8, or 12 training sessions, respectively.

first step training now becomes transferable. The underlying reason is intuitively understandable.
The second step training modified the feature representations adhered to the first step training, and
hence reduced specificity (or equivalently increased transfer). Fig. 7C further summarizes the
learning improvements across different training steps and conditions, demonstrating that our model
successfully replicates the double training phenomenon in perceptual learning.

In summary, the adaptability of perceptual learning is governed by the interaction between specific
feature-based learning at lower levels and transferable task-based learning at higher levels. Condition-
specific training leads to the dominance of feature-based learning, resulting in significant specificity.
In contrast, training with varied conditions allows task-based learning to dominate, enhancing transfer.
This difference enables a transition from transfer to specificity as stimulus repetitions increase.
Although not exclusively from the Vernier discrimination task, the observed changes in specificity
and transfer are influenced by training paradigms rather than the tasks themselves. The simplicity of
the Vernier discrimination task, requiring only a single stimulus presentation per trial, underscores its
utility in illustrating these principles without the need for complex processing, making it ideal for our
model demonstrations.
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• Setup: Training included varied orientations 
and locations.

• Result: Improved performance at both 
trained and untrained locations, showing that 
varied training enables generalization to new 
areas.

• Setup: Training focused on a single location 
and orientation.

• Result: High accuracy at the trained location, 
low accuracy at untrained locations, 
indicating that learning is location-specific.

The model successfully reproduces classical perceptual learning effects, demonstrating both 
specificity and transfer.

Experiment 1: Specificity

Experiment 2: Transfer
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Figure 7: Transfer in perceptual learning via double training. A. A Vernier discrimination task similar
to that in [28]. The visual stimulus used for the first step training (top, loc1_ori1) and the visual
stimulus used for the second step training (bottom, loc2_ori2). B. Learning curves and thresholds
for pre- and post-testing in different conditions. The left panel corresponds to the results of the
first step training as in Fig. 4B. The right panel displays the results of double training. Notably,
the threshold at the second trained condition (ori2_loc2, deep red circles) decreases significantly
after double training, and thresholds at untrained locations (ori1_loc2, light red squares) or untrained
orientations (ori2_loc1, medium red triangles) also exhibit notable declines. C. Statistical results
of training and transfer improvements. The left panel corresponds to the results of the first step
training as in Fig. 4C. The right panel displays the results of double training. A substantial gain at the
second trained condition (ori2_loc2, deep red bar) and at untrained conditions (ori1_loc2, light red;
ori2_loc1, medium red)

5 Conclusions and discussions

All learning agents, including the brain, face a fundamental challenge: balancing task performance
with the cost of learning. Intuitively, if the agent does not need to account for the feature distribution
in the external world, it can quickly adapt by reusing existing feature representations to complete tasks
efficiently and at low cost. However, when the agent identifies meaningful statistical patterns in the
environment, it can refine its feature representations to enhance precision and effectiveness. Although
beneficial, this adaptation is both resource-intensive and slow, as the agent must first distinguish
between genuine environmental changes and random fluctuations. In essence, to learn or not to learn,
is a generic question faced by all learning agents.

In this work, starting from the goal of reconciling the conflicting phenomena of specificity and transfer
in perceptual learning, we present a solution of the brain, i.e., the dual-learning framework. This
framework consists of two learning processes: a task-based one and a feature-based one. Specifically,
task-based learning is fast, which enables the agent to learn to accomplish a task rapidly by using
existing feature representations; while feature-based learning is slow, which enables the agent to
improve feature representations to reflect the statistical change of the external environment.

Our dual-learning model successfully replicates and elucidates classical experimental findings related
to specificity and transfer in perceptual learning. It reveals that the interaction between the slow-
changing, specific feature learning at the early visual pathway and the flexible, transferable task
learning at the higher visual pathway governs the adaptability of perceptual learning. Typically,
learning tends to adjust the readout of neural representations (i.e., task-based learning) rather than
altering the representations themselves (i.e., feature-based learning), unless there is a significant
change in the statistical properties of external information. Thus, the default state of learning favors
transfer. However, in traditional experimental paradigms, the frequent repetition of stimuli leads
to the dominance of feature-based learning, thereby exhibiting significant specificity; by limiting
the repetition of stimuli, task-based learning can dominate, thereby enhancing transfer. As such,
perceptual learning can display a transition from transfer to specificity as the number of stimulus
repetitions increases.

Our dual-learning model can be regarded as a computational modeling implementation of the two-
stage model theory [44]. While the two-stage model theory aims to address the contradictions
between task-related and task-unrelated perceptual learning, it posits the existence of feature-based
and task-based plasticity within perceptual learning. Thus, our model is a practical realization of
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Figure 5: Transfer in perceptual learning via varied training conditions. A. A Vernier discrimination
task similar to that in [34]. During training, visual stimuli were presented at three distinct locations
with two orientations: horizontal and vertical (top). For transfer evaluation, a single stimulus was
presented at a new, untrained location (bottom), highlighted with a red circle. B. Random training
condition. The learning curve and thresholds for training across multiple conditions randomly.
The threshold at the training conditions (dark blue circles) decreases significantly, and the transfer
condition (red circles) shows a similar decline. C. Rotating training condition. The learning curve
and thresholds for training with stimuli rotating. The threshold at the training conditions (light blue
circles) decreases significantly, and the transfer condition (red circles) shows a similar decline. D.
Summary of learning and transfer improvements in different conditions.
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Figure 6: Transition from transfer to specificity with the increased number of training sessions. A. A
Vernier discrimination task similar to that in [26]. Visual stimulus used for training (top, loc1_ori1)
and stimuli for transfer evaluation (bottom, loc2_ori2). B. The learning curves under different
training (left) and transfer (right) conditions. The thresholds are depicted with different colored
curves representing different numbers of training sessions: gray (2 sessions), light red (4 sessions),
medium red (8 sessions), and dark red (12 sessions). C. Summary of transfer improvements with
varied training sessions. Each bar represents the improvement in transfer performance following 2, 4,
8, or 12 training sessions, respectively.

first step training now becomes transferable. The underlying reason is intuitively understandable.
The second step training modified the feature representations adhered to the first step training, and
hence reduced specificity (or equivalently increased transfer). Fig. 7C further summarizes the
learning improvements across different training steps and conditions, demonstrating that our model
successfully replicates the double training phenomenon in perceptual learning.

In summary, the adaptability of perceptual learning is governed by the interaction between specific
feature-based learning at lower levels and transferable task-based learning at higher levels. Condition-
specific training leads to the dominance of feature-based learning, resulting in significant specificity.
In contrast, training with varied conditions allows task-based learning to dominate, enhancing transfer.
This difference enables a transition from transfer to specificity as stimulus repetitions increase.
Although not exclusively from the Vernier discrimination task, the observed changes in specificity
and transfer are influenced by training paradigms rather than the tasks themselves. The simplicity of
the Vernier discrimination task, requiring only a single stimulus presentation per trial, underscores its
utility in illustrating these principles without the need for complex processing, making it ideal for our
model demonstrations.
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The model replicates complex interactions between specificity and transfer, consistent with advanced 
experimental paradigms.

Experiment 3: Transition from Transfer to Specificity

Experiment 4: Double Training Paradigm

• Setup: Varied number of training sessions 
then training a new orientation and location.

• Result: More training shifts performance 
from transfer to specificity, aligning with 
classical perceptual learning patterns.

• Setup: Introduced a second training with a 
different orientation and location.

• Result: Double training reduces specificity, 
enhancing transfer by adjusting feature 
representations.



To Learn or Not to Learn, That is the Question 
Core Challenge:
• Balancing task performance with the cost of learning 

    – a fundamental issue for all learning agents, including the brain.

Model Insights: 
Quick Task-based & Slow Feature-based Strategy
• Default State: Task-based learning favors transfer by optimizing existing representations.
• Specificity through Repetition: Repeated stimuli encourage specificity via feature-based learning.

Dual Learning Strategies:
• Feature-based Learning:

Slow, resource-intensive, refines 
representations to capture meaningful 
environmental changes.

• Task-based Learning: 
Fast, efficient, and reuses existing 
representations for low-cost adaptation.

was found that participants could generalize their enhanced perceptual performances to untrained
conditions, displaying the effect of transfer (red circles in Fig. 1B(ii)).

The above two experiments highlight the importance of the number of training sessions under the
same stimulus condition in inducing the specificity or the transfer effect. It is expected that with
the increased number of training sessions under the same condition, the learning effect should go
from transfer to specificity gradually. Indeed, this was confirmed experimentally in an orientation
discrimination task [26]. In this task, participants underwent different numbers of training sessions
under the same condition, followed by a switch to untrained conditions to measure the extent of
transfer (Fig. 1C(i)). It was found that with the increased number of training sessions under the same
condition, the perceptual performance of participants was improved (the left panel of Fig. 1C(ii)),
whereas the transfer effect was decreased (the right panel of Fig. 1C(ii))

3 The dual-learning model

To reconcile the phenomena of specificity and transfer in perceptual learning, we propose a dual-
learning model. As depicted in Fig. 2, the model consists of three sequential information processing
stages, which are feature extraction, feature-based learning, and task-based learning. We use the
Vernier discrimination task as an example to introduce the model.

Task-based
learning

Feature-based
learning

Feature
extraction

Decision
z

0

1
...

Refined rep.Input image
µ :iro

Feature rep.

A

I( )x F( ,µ)x

B C
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F (* x,µ)

po
s.  x
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Figure 2: Overview of the dual-learning model. The Vernier discrimination task is used as an
example. A. Feature extraction. It involves using basis functions to transform an image I(x) into
feature representations F

⇤
t (x, ✓), where x and ✓ denote the position and orientation features. B.

Feature-based learning. It refines feature representations to Ft(x, ✓) to reflect the statistical changes
of external inputs. The feedforward connections are updated following the Hebbian learning rule, and
they are strengthened at locations where stimuli are presented excessively, inducing location-specific
changes in feature representations. C. Task-based learning. Using convolutional layers and global
max pooling, it integrates the task-relevant information from feature representations Ft(x, ✓) to make
the decision z

⇤.

3.1 The model structure

Feature Extraction. This models the functions of the retina, the Lateral Geniculate Nucleus (LGN),
and the input layer of V1 in the visual pathway, extracting preliminary features from input images
to form retinotopic feature representations (see Fig. 2A). There is no plasticity at this stage, and
we employ the HyperBF network [37] to model feature extraction. Denote It(x) the input image
presented at trial t and F

⇤
t (x, ✓) the extracted feature representation, which is expressed as:

F
⇤
t (x, ✓) = norm [G(x� x0

, ✓) ⇤ It(x0)] , (1)

where x and ✓ denote the position and orientation feature in the image, respectively. The variable
x0 represents the position of neighboring pixels, used in the convolution operation. The Gabor
function G(x�x0

, ✓) = 1/2exp
⇥
�(x� x0)2/(2�2

g)
⇤
cos [2⇡x0

/�cos(✓) +  ], with �g the standard
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