#### Graph Convolutions Enrich the Self-Attention in Transformers!

<sup>1</sup>Jeongwhan Choi <sup>2</sup>Hyowon Wi <sup>2</sup>Jayoung Kim <sup>2</sup>Yehjin Shin <sup>3</sup>Kookjin Lee <sup>4</sup>Nathaniel Trask <sup>2</sup>Noseong Park

<sup>1</sup>Yonsei University
 <sup>2</sup>Korea Advanced Institute of Science and Technology (KAIST)
 <sup>3</sup>Arizona State University
 <sup>4</sup>University of Pennsylvania



## We Live in the AI Era, and Behind the Success of AI are Transformers!



https:

//x.com/NobelPrize/status/1843951197960777760

https://www.linkedin.com/pulse/

beyond-proprietary-models-how-open-source-llms-ais-role-ramshetti-5wzuc/

#### Self-Attention is the Heart of Transformers

• The self-attention mechanism, denoted as SA, can be expressed as follows:

$$\begin{split} \text{SA}(\boldsymbol{X}) &= \text{softmax}\Big(\frac{\boldsymbol{X}\boldsymbol{W}_{\text{key}}(\boldsymbol{X}\boldsymbol{W}_{\text{qry}})^{\mathsf{T}}}{\sqrt{d}}\Big)\boldsymbol{X}\boldsymbol{W}_{\text{val}} \\ &= \bar{\boldsymbol{A}}\boldsymbol{X}\boldsymbol{W}_{\text{val}}. \end{split}$$



## Graph Signal Processing

Discrete signal processing (DSP)

• Signal  $oldsymbol{x} 
ightarrow$  Apply Filter  $oldsymbol{g} 
ightarrow$  Output  $oldsymbol{y}$ 

$$\mathbf{y}_i = \sum_{j=1}^n \mathbf{x}_j \mathbf{g}_{i-j}.$$
 (1)

Graph signal processing (GSP) – generalization of DSP to graph domain

• The graph filter **H** can be written with a shift operator **S** (i.e., adjacency matrix **A**):

$$\boldsymbol{y} = \boldsymbol{H}\boldsymbol{x} = \sum_{k=0}^{K} w_k \boldsymbol{S}^k \boldsymbol{x}, \qquad (2)$$

where K is the maximum order of polynomial, and  $w_k$  is a coefficient.

## Self-Attention as a Graph Filter

- Self-attention matrix:  $ar{m{A}} = m{D}^{-1}m{A}$ ,
  - A is an adjacency matrix
  - **D** is a degree matrix.
- Self-attention can be considered as a simple graph filter  $(\boldsymbol{H}=\bar{\boldsymbol{A}})$



- Self-attention is a weighted graph
  - Nodes  $\Leftrightarrow$  Tokens
  - Edge weights  $\Leftrightarrow$  Attention scores

## Oversmoothing Problem in Transformers



Figure: Filter frequency response and cosine similarity

- Oversmoothing problem:
  - As self-attention is a "low-pass filter", high-frequency information is attenuated.
  - Latent representations tend to become similar to each other.

## Graph Filter-based Self-Attention (GFSA)

- We redesign self-attention from a graph signal processing perspective
- Our proposed GFSA is defined with the graph filter  $\tilde{H}_{GFSA}$ :

$$GFSA(\boldsymbol{X}) := \tilde{\boldsymbol{H}}_{GFSA} \boldsymbol{X} \boldsymbol{W}_{val}, \qquad (3)$$
$$\tilde{\boldsymbol{H}}_{GFSA} = w_0 \boldsymbol{I} + w_1 \bar{\boldsymbol{A}} + w_K \underbrace{(\bar{\boldsymbol{A}} + (K-1)(\bar{\boldsymbol{A}}^2 - \bar{\boldsymbol{A}}))}_{\simeq \bar{\boldsymbol{A}}^K}, \qquad (4)$$

• We approximate  $\bar{A}^{K}$  with the first-order Taylor approximation:

$$ar{oldsymbol{A}}^{K}\simeqar{oldsymbol{A}}+(K-1)(ar{oldsymbol{A}}^2-ar{oldsymbol{A}}).$$
 (5)

• GFSA learns the appropriate coefficients for downstream tasks, so it can be reduced to a low-pass-only, high-pass-only, or combined filter.

## Analysis of Frequency Responses with Visualization



Figure: Visualization of the frequency responses for all 12 layers of BERT trained on STS-B dataset. The top-left figure corresponds to the first layer, and the bottom-right figure corresponds to the last layer.

### GFSA Improves the Performance of Transformers!



Figure: Performance improvements (%) of our GFSA when integrated with different Transformer backbones in various domains

## GFSA with Efficient Design Strategies



Figure: GFSA in selected layer. Effectiveness of our selective layer strategy on ImageNet-1k

Figure: GFSA in linear Transformers. Performance, runtime, and GPU usage (circle sizes) of models on ListOps (2K) from Long Range Arena benchmark

#### Conclusion



• Considering the ongoing advancements in large language models, we hope that our approach may offer new insights for enhancing their performance and efficiency.

# Thank You!

Email: jeongwhan.choi@yonsei.ac.kr

Paper



GitHub



