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Abstract

Recently, Gaussian splatting has received more and more attention in the field
of static scene rendering. Due to the low computational overhead and inherent
flexibility of explicit representations, plane-based explicit methods are popular
ways to predict deformations for Gaussian-based dynamic scene rendering models.
However, plane-based methods rely on the inappropriate low-rank assumption and
excessively decompose the space-time 4D encoding, resulting in overmuch feature
overlap and unsatisfactory rendering quality. To tackle these problems, we propose
Grid4D, a dynamic scene rendering model based on Gaussian splatting and employ-
ing a novel explicit encoding method for the 4D input through the hash encoding.
Different from plane-based explicit representations, we decompose the 4D encod-
ing into one spatial and three temporal 3D hash encodings without the low-rank
assumption. Additionally, we design a novel attention module that generates the
attention scores in a directional range to aggregate the spatial and temporal features.
The directional attention enables Grid4D to more accurately fit the diverse defor-
mations across distinct scene components based on the spatial encoded features.
Moreover, to mitigate the inherent lack of smoothness in explicit representation
methods, we introduce a smooth regularization term that keeps our model from
the chaos of deformation prediction. Our experiments demonstrate that Grid4D
significantly outperforms the state-of-the-art models in visual quality and rendering
speed. Project page: https://jiaweixu8.github.io/Grid4D-web/.

1 Introduction

Dynamic scene rendering aims to construct dynamic scenes from images with specific camera poses
and timestamps, allowing rendering from arbitrary viewpoints and moments. Traditional methods
use Neural Radiance Field (NeRF) [26] and deformation fields to reconstruct dynamic scenes for
arbitrary rendering. However, these works rely on predicting deformations with the over-smooth
full Multilayer Perceptron (MLP) [31, 40, 48, 10, 19, 28, 55, 47, 16, 5, 18, 1, 38, 23, 45, 21, 4, 53],
resulting in slow training speeds and artifacts in rendering quality. To address these challenges,
explicit representations such as planes [3] and hash encoding [27] have been introduced to enhance
the rendering of dynamic scenes [33, 9, 2, 46, 8, 41, 11, 35, 36]. The explicit representations store the
intermediate features generated by the partial forward propagation process in a grid-like format. This
approach allows us to obtain intermediate features by directly interpolating the cached features based
on the input, bypassing the need for the full forward propagation process. In addition to reducing
computing resource consumption, the inherent flexibility of explicit representation offers advantages
in rendering more complex scenes.
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Figure 1: We propose a novel explicit representation method for dynamic scene rendering that decom-
poses the space-time 4D encoding into the 3D format without the unsuitable low-rank assumption.
We achieve significant improvements over the state-of-the-art models [44, 50] in rendering quality.

Recently, Gaussian splatting [13] achieved fast and high-fidelity rendering of static scenes. Addi-
tionally, many works have employed Gaussian splatting for dynamic scene rendering by deforming
Gaussians based on the timestamp [44, 50, 22, 17, 15, 7, 25, 49, 6, 20, 24, 12, 52, 37]. Deforming
Gaussians through pre-defined functions is an effective way to reconstruct dynamic scenes with
sufficient viewpoints [22, 17]. Additionally, implicit and explicit neural networks are more popular
for deforming Gaussians in general cases [44, 50, 12]. However, fully MLP-based implicit neural
networks have limited learning capacity because of their over-smooth inherent property, thereby strug-
gling to render several complex scenes and details effectively. Hence, explicit representation might
be an available method to address these problems. Prior works such as 4D-GS [44] use plane-based
explicit representations to predict Gaussian deformations, decomposing the 4D space-time encoding
into a format comprising six 2D planes, but the performance remains unsatisfactory. We consider that
the plane-based methods for Gaussian deformation prediction are based on the low-rank assumption
which assumes that the features for the deformations have a great deal of commonality and could be
factorized into a very low-rank format [33, 9, 2, 44]. As shown in Figure 2, when facing Gaussians
with massive overlapping coordinates, the over-decomposition makes the features have excessive
overlap which limits their discriminability for deformation prediction. Therefore, such overlap might
block the model from predicting different deformations, resulting in low rendering quality.

To address these problems, we present Grid4D, a novel model with high dynamic scene rendering
quality based on Gaussian splatting [13]. Our approach leverages hash encoding [27] and proposes a
new explicit representation method. Unlike the plane-based explicit representations relying on the
unsuitable low-rank assumption, as shown in Figure 1, we decompose the 4D encoding into one
spatial 3D hash encoding and three temporal 3D hash encodings. Figure 2 illustrates our proposed 4D
decomposed hash encoding reduces overlap arising from the over-decomposed plane-based methods,
resulting in more discriminative features. Notably, our encoder generates two types of features:
spatial features, representing static information across the timeline, and temporal features, capturing
dynamic information. For aggregation, we design a novel attention mechanism, directional attention,
which leverages spatial features to generate attention scores in a directional range. This directional
attention aligns with the observation that deformation consistency within each scene component
often varies across different components, and the attention from the spatial features could better help
the model fit such differences. However, like other explicit representation models, Grid4D often
lacks smoothness. To address this issue, we propose a novel training strategy incorporating smooth
regularization which mitigates chaotic deformation predictions to enhance rendering clarity.

We compare Grid4D with several state-of-the-art dynamic scene rendering models. Figure 1 and the
experimental results show that Grid4D outperforms other models significantly in both visual quality
and rendering speed. In general, the contribution of this paper can be summarized as the following.

• We propose a novel explicit representation method for dynamic scene rendering. By de-
composing the 4D encoding into four 3D encodings, our 4D decomposed hash encoder
effectively represents the features without relying on the low-rank assumption.

• We design a novel attention module for spatial and temporal feature aggregation. The
directional attention module aligns with the variations in deformation consistency across
different scene components, thereby enhancing deformation prediction accuracy.
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• We employ a smooth training strategy to ensure the smoothness of our model. The smooth
regularization effectively mitigates chaotic deformation predictions, resulting in high clarity
in the rendered images produced by Grid4D.

2 Related Works

NeRF-based Dynamic Scene Rendering. NeRF [26] reconstructs light fields of static scenes by
implicit representations and achieves significant visual improvements. To extend NeRF capabilities for
reconstructing dynamic scenes, applying implicit deformation fields to static models finds widespread
use in dynamic scene rendering [31]. To model dynamic scenes more accurately, various studies
segment a scene into components with different attributes for different modeling [10, 38]. Moreover,
several works apply higher-dimensional latent codes for the network input [16, 28] and incorporate
additional supervision such as flow supervision across frames [40, 11, 21, 5, 18, 48, 19, 4] and
motion mask supervision [47]. Meanwhile, focusing on modeling rigid objects is important in
improving accuracy because of their unique physical properties and prevalence in most scenes [38, 53].
Additionally, some research addresses the problems of dynamic scene models in several challenging
scenes such as dynamic human modeling [1], specular objects [47] and the scenes without camera
poses [23]. However, implicit representations based on full MLPs suffer from the over-smoothing
inherent property and require time-consuming training processes. On the other hand, explicit
representations, such as Triplanes [3] and Hash Encoding [27], enhance NeRF by improving both
visual quality and training speed. A popular technique for plane-based explicit representations in
dynamic scene rendering is decomposing 4D inputs into six 2D inputs [9, 2, 33, 46, 35]. Also, hash
encoding and 3D grid explicit representations can assist MLPs in predicting deformations with faster
speed and higher precision [8, 41, 11, 42, 29, 36].

Gaussian-based Dynamic Scene Rendering. Recently, Gaussian splatting [13] models static scenes
by Gaussian points, achieving both fast training and high visual quality. When it comes to dynamic
scene rendering, using 4D Gaussians or deforming Gaussians with pre-defined functions perform
well in the cases with sufficient viewpoints [49, 6, 22, 17, 25]. Alternatively, deforming the attributes
of 3D Gaussians according to timestamps with neural networks has led to better outcomes in general
dynamic scene rendering [50, 44, 15, 7, 20, 24, 12, 52, 37]. Fully MLP-based deformation fields
achieve high rendering quality [50] but suffer from the over-smooth inherent property, resulting
in the failure of some detail rendering and complex scenes. Explicit representation models, for
example, 4D-GS [44], utilize the planes-based methods as the deformation field. Although plane-
based representations are more flexible, they are based on the unsuitable low-rank assumption, leading
to massive feature overlap and rendering artifacts. Our work mainly focuses on tackling the unsuitable
low-rank assumption inherent in plane-based explicit representations to improve the rendering quality
of Gaussian-based models.

3 Method

3.1 Prelimaries: Gaussian Splatting

Gaussian splatting [13] is a static scene rendering model, known for its high training speed and visual
quality. This model assumes that the scene is composed of 3D Gaussian kernels with {µ, S,R, σ, c},
corresponding to the position, scaling, rotation, opacity, and color. Notably, the color attribute is
defined by the spherical harmonic coefficients (SH). To render the scene, by using a view transform
matrix W and a projective Jacobian matrix J , Gaussians can be splatted onto camera planes [56, 51].

Σ′ = JWΣWTJT , Σ = RSSTRT (1)

where Σ′ is the covariance matrix in camera planes and Σ is the original Gaussian covariance which
can be calculated by the scaling and rotation attributes. Finally, supposing that the pixel on the camera
planes is p, the splatted Gaussians can be rendered by the volume rendering equation,

C(p) =

N∑
i=1

ciαi

i−1∏
j=1

(1− αj), αi = σie
− 1

2 (p−µp
i )

TΣ′−1
i (p−µp

i ) (2)

where µp is the projected coordinates of the 3D Gaussians, and N is the number of overlapped
Gaussians on the pixel.
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Figure 2: Comparison of our proposed 4D decomposed hash encoding with the plane-based explicit
representation [44]. (a) Compared to the plane-based methods based on the low-rank assumption, our
methods reduce the overlap ratio in the features from a half to a quarter when encoding points A and
B with heavily overlapping coordinates. (b) is the t-SNE [39] visualization of all the features, and the
colors denote the corresponding represented deformations. The diversity of colors demonstrates that
the reduced overlap makes the features represent different deformations more effectively.

In optimization, adaptive density control is crucial for convergence. It involves pruning low-opacity
Gaussians and densifying them based on the gradients and scaling. However, original Gaussian
splatting cannot represent dynamic scenes and needs the help of deformation fields.

3.2 4D Decomposed Hash Encoding

Dynamic scene rendering involves deforming Gaussians according to a 4D coordinate (x, y, z, t) input,
where t represents the timestamp and (x, y, z) means the position of a Gaussian. Instead of employing
the over-smooth fully MLP-based implicit representations, we use explicit representation for Grid4D.
However, existing plane-based explicit representation relies on the unsuitable low-rank assumption
which overly decomposes the (x, y, z, t) encoding into (x, y), (y, z), (x, z), (x, t), (y, t), (z, t) plane
encodings [33, 9, 2, 44]. As shown in Figure 2(a), for instance, considering the Gaussians A and
B with the same y and z coordinates. The plane-based method has the same encoded features in
the (y, z), (y, t), (z, t) planes. Such a high overlap ratio might lead to the low discriminability of the
features and block the model from fitting different deformations accurately. To address this problem,
directly removing the decomposition by simply adding the time dimension to the traditional 3D grid
for the 4D hyper-grid hash encoding is a possible way. However, the 4D hyper-grid hash encoding
leads to high collision rates due to the high space complexity O(n4) of the 4D hyper-grid [41].
Therefore, thoroughly eliminating the overlap might not be an available solution.

Tri-axial 4D Decomposed Grid. To address this problem, we propose a novel decompo-
sition approach that decomposes the 4D encoding (x, y, z, t) into four 3D hash encodings
(x, y, z), (x, y, t), (y, z, t), (x, z, t). The decomposition allows us to work with fewer parameters,
which reduces the space complexity from O(n4) to O(n3) without relying on the low-rank assump-
tion. As shown in Figure 2(a), the tri-axial decomposition can effectively reduce the overlap ratio
from a half to a quarter, thereby enhancing each feature to represent the corresponding deformation.
Figure 2(b) demonstrates that the features encoded by our methods are more discriminative for
deformation prediction than plane-based methods.

Multiresolution Hash Encoding. In the original hash encoding technique [27], the grid employed in
the encoder has the same resolution across all dimensions. Consistent resolutions could be suitable for
static scene rendering, where the isotropic sampling assumption holds in the 3D space. Nevertheless,
the sampling of the 4D space is usually anisotropic, which is usually sparse in the time dimension.
Therefore, in our implementation, the temporal 3D encodings (x, y, t), (y, z, t), (x, z, t) have different
resolutions in the t dimension to account for this sparsity. Following the InstantNGP [27], we set the
multiple resolutions of each dimension in a geometric progression:

Nl = ⌊Nmin · b⌋, b = exp

(
lnNmax − lnNmin

L− 1

)
(3)

where Nmin, Nmax is the coarsest and finest resolutions, l is level number, L is the max level, and Nl

is the resolution we select. The grid voxel positions for the input x could be calculated by rounding
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Figure 3: The overview of Grid4D. Given the canonical Gaussians and the timestamp, we first
encode the decomposed input separately. Then we apply the directional attention scores generated by
the spatial static features to the temporal dynamic features, and we decode the features with a tiny
multi-head MLP. Finally, the Gaussians deformed by the predicted deformations are splatted by the
differentiable rasterization operation [13] to render the images for supervision.

down and up in each level ⌊xl⌋ = ⌊x · Nl⌋, ⌈xl⌉ = ⌈x · Nl⌉. The voxels in each level could be
obtained from the hash table by hashing the corresponding positions:

hl(xl) =

 d⊕
i=1,xi∈xl

xiπi

 mod Tl (4)

where
⊕

is the bit-wise XOR operation, d is the dimension of the input, πi are unique large prime
numbers, Tl is the size of the level l hash table. Then the encoded features could be calculated by
the trilinear interpolation of the grid voxel values. Generally, the encoded features of the 4D input
(x, y, z, t) include the spatial and temporal features from the spatial grid hash encoder Gxyz and
temporal grid hash encoders Gxyt, Gyzt, Gxzt respectively.

3.3 Multi-head Directional Attention Decoder

Our 4D decomposed hash encoding generates two types of features: temporal features and spatial
features. The temporal features represent the information related to the timestamp while the spatial
features represent the common information across the timeline. The Gaussians representing different
scene components often have various deformations in almost every timestamp. Therefore, the spatial
features could be used to help the model fit such variations, and we design the directional attention
module for the spatial and temporal feature aggregation.

Directional Attention. We infer the attention features from the spatial grid hash encoder Gxyz with
a tiny spatial MLP fs, and generate the score a through the following formula,

a = 2 · Φ(hxyz)− 1, hxyz = fs ◦Gxyz(x, y, z) (5)

where Φ is the Sigmoid function. We consider that several components probably have entirely opposite
deformations against the neighboring Gaussians. For example, the Gaussians for the shadows often
have opposite motions relative to the objects. Therefore, different from the common range (0, 1) of
the attention score a, we scale it to a directional range (−1, 1) to represent neighboring deformations
with opposite directions, thereby enhancing the representation ability of the attention mechanism.

Then we apply the attention score to the activated deformation features encoded by the three temporal
grid hash encoders Gxyt, Gyzt, Gxzt and a tiny temporal MLP ft.

h = a⊙ ft(Gxyt(x, y, t), Gyzt(y, z, t), Gxzt(x, z, t)) (6)

where ⊙ is the dot product operation. Finally, we get the deformation features h with high represen-
tation ability. Our experiments demonstrate that our attention module outperforms the architecture
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which either directly decodes the concatenation of the spatial and temporal features or uses the
common range (0, 1) of the attention score.

Multi-head Deformation Decoder. The decoder is required to decode the features h to get the
Gaussian deformation. Different from the prior works [44, 50], we use a tiny multi-head MLP D to
decode the features and predict the position deformation with a rotation matrix Rx and a translation
matrix Tx as [12]. Finally, we deform the position, scaling, and rotation of the Gaussians in the
canonical space with the predicted deformation.

µ′ = Rxµ+ Tx, S
′ = S +∆s, R′ = R+∆r, D(h) = {Rx, Tx,∆r,∆s}, (7)

We define the rotation matrix Rx with a quaternion for more accurate interpolation and stable
optimization. Following Gaussian splatting [13], the deformed Gaussians could be rendered into
images of specific timestamps via differentiable rasterization.

3.4 Training with Smooth Regularization

Although the proposed model architecture could effectively predict the Gaussian deformation, the 4D
decomposed hash encoder still suffers from the lack of smoothness, a common challenge in most
explicit representation methods. We consider that the MLP decoder has the smooth inherent property
and does not require additional smoothing. Therefore, we set our regularization in the feature space
without involving the MLP decoder inference for higher efficiency. Generally, to regularize the hash
encoder, we propose a novel smooth regularization loss.

Lr = ||Gxyzt(x, y, z, t)−Gxyzt(x+ ϵx, y + ϵy, z + ϵz, t+ ϵt)||22 (8)

where (ϵx, ϵy, ϵz, ϵt) is the small random perturbation for the input (x, y, z, t) respectively, and Gxyzt

is the concatenation of four grid hash encoders. This regularization enforces similarity among encoded
features in neighboring regions, thereby making the nearby Gaussians have similar deformations.
Due to the difference of spatial and temporal encoding, we use a different regularization setting for
the spatial encoding for several cases. Notably, to improve the efficiency, we randomly select partial
Gaussians for the regularization instead of using them all. Our experiments demonstrate that this
smooth regularization effectively mitigates the deformation chaos, leading to significantly improved
rendering clarity.

In general, similar to Gaussian splatting [13], our total loss function can be summarized as the
weighted sum of L1 color loss, D-SSIM loss, and the proposed smooth regularization term.

L = (1− λc)L1 + λcLD−SSIM + λrLr (9)

where λc, λr are the hyperparameters to balance the losses. Following [50], we use the detached
Gaussian positions for deformation prediction, which results in better performance. Also, similar to
prior works [50, 44], we initialize the static canonical Gaussians without deformation at the beginning
of the training process. Specifically for SfM [32] initialized Gaussians, we shorten or remove the
static initialization process. We apply the same adaptive density controller and opacity resetting
mechanism as Gaussian splatting [13]. The pipeline of Grid4D is illustrated by Figure 3.

4 Experiments

In this section, we introduce our experiments conducted on a single RTX 3090 GPU. We build
our code mainly on PyTorch [30], while we implement our 4D decomposed hash encoder with
CUDA/C++. More experimental results and analysis can be found in the supplementary.

4.1 Experimental Setup

Datasets. We evaluate Grid4D on two popular datasets. D-NeRF [31] dataset is a public monocular
synthetic dataset that provides accurate and time-varying camera poses. HyperNeRF [28] dataset is a
public real-world dataset captured by one or two moving cameras. Neu3D [16] dataset is a public
dataset captured by multiple cameras with fixed poses. However, different from synthetic datasets,
the camera poses of the HyperNeRF and Neu3D datasets are estimated by COLMAP [32], which
is not accurate. We set the rendering resolutions of the D-NeRF, HyperNeRF and Neu3D datasets
to 800 × 800, 536 × 900 and 1352 × 1024 respectively. Notably, we find several mistakes in the
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Figure 4: Qualitative comparisons on the synthetic D-NeRF dataset [31] with our baselines [8, 44, 50].

ground truth of the ‘Lego’ scene in the D-NeRF dataset, as shown in the last row of Figure 4, so we
ignore this scene in all quantitative comparisons of rendering quality.

Baselines. We compare Grid4D with several state-of-the-art models [2, 8, 44, 50, 12]. HexPlane [2]
and TiNeuVox [8] are NeRF-based dynamic scene rendering models, utilizing plane-based and
3D grid explicit representations respectively. 4D-GS [44] and DeformGS [50] are Gaussian-based
models, employing plane-based explicit representation and fully MLP-based implicit representation
for the deformation fields respectively. SC-GS [12] is a model built on DeformGS [50], and proposes
to use sparse control points for better dynamic scene rendering and edit.

Hyperparameters. For all datasets, we configure the resolution of the spatial grid hash encoder to
span from 16 to 2048 across 16 levels. Meanwhile, the max level number L of temporal grid hash
encoders remains consistent at 32. We set λc and λr to 0.2 and 0.5 for common scenes and follow a
similar learning rate schedule as DeformGS [50, 13].

4.2 Comparisons

Comparison of visual quality. We compare Grid4D with the state-of-the-art models on the synthetic
D-NeRF [31] dataset (Table 1 and Figure 4), the real-world HyperNeRF [28] dataset (Table 2 and
Figure 5) and the real-world Neu3D [16] dataset (Table 3 and Figure 6). The PSNR, SSIM [43],
LPIPS [54](VGG [34]), and MS-SSIM are the metrics denoting visual quality. Notably, the Defor-
mGS [50] model fails to construct several HyperNeRF scenes with large motions and imprecise
camera poses, as mentioned in their paper. Several failed cases can be found in Section B of the
supplementary, and we consider that this is also due to the over-smooth inherent property of fully
MLP-based implicit representation.

Due to the inherent flexibility of the explicit representation, the results of the ‘Hook’ scene show that
Grid4D has a stronger ability to reconstruct fine structures than DeformGS [50] which is based on the
implicit representation. We also apply the sparse control points in SC-GS [12] to our model and build
SC-GS on Grid4D rather than DeformGS for further evaluation. We refer to it as ’Grid4D + SC’,
and observe an improvement in comparison to Grid4D and SC-GS as list in the last three rows of
Table 1. Thanks to our 4D decomposed hash encoding, when facing the scenes with complex motions
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Table 1: Quantitative comparisons on the synthetic D-NeRF [31] dataset. The higher PSNR (↑),
higher SSIM (↑) and lower LPIPS (↓) denote better rendering quality. The color of each cell shows
the best and the second best.

Bouncing Balls Hell Warrior Hook Jumping Jacks
Model PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

HexPlane [2] 40.36 0.992 0.031 24.30 0.944 0.073 28.26 0.955 0.052 31.74 0.974 0.036
TiNeuVox [8] 40.28 0.992 0.042 27.29 0.964 0.076 30.51 0.959 0.060 33.46 0.977 0.041
4D-GS [44] 40.77 0.994 0.015 28.80 0.974 0.037 32.95 0.977 0.027 35.50 0.986 0.020

DeformGS [50] 40.91 0.995 0.009 41.34 0.987 0.024 37.06 0.986 0.016 37.66 0.989 0.013
SC-GS [12] 41.59 0.995 0.009 42.19 0.989 0.019 38.79 0.990 0.011 39.34 0.992 0.008

Grid4D (Ours) 42.62 0.996 0.008 42.85 0.991 0.015 38.89 0.990 0.009 39.37 0.993 0.008
Grid4D + SC 42.17 0.995 0.008 42.81 0.990 0.017 40.26 0.992 0.008 39.58 0.993 0.008

Mutant Standup Trex Mean
Model PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS PSNR SSIM LPIPS

HexPlane [2] 33.66 0.982 0.028 34.12 0.983 0.019 31.01 0.976 0.028 31.92 0.972 0.038
TiNeuVox [8] 32.07 0.961 0.048 34.46 0.980 0.033 31.43 0.967 0.047 32.78 0.972 0.050
4D-GS [44] 37.75 0.988 0.016 38.15 0.990 0.014 33.95 0.985 0.022 35.41 0.985 0.021

DeformGS [50] 42.47 0.995 0.005 44.14 0.995 0.007 37.56 0.993 0.010 40.16 0.991 0.012
SC-GS [12] 43.43 0.996 0.005 46.72 0.997 0.004 39.53 0.994 0.009 41.65 0.993 0.009

Grid4D (Ours) 43.94 0.996 0.004 46.28 0.997 0.004 40.01 0.995 0.008 42.00 0.994 0.008
Grid4D + SC 44.07 0.996 0.004 46.87 0.997 0.004 41.12 0.995 0.008 42.41 0.994 0.008

Table 2: Quantitative comparison on the validation rig part (Rig) and the interpolation part (Interpo-
lation) of the real-world HyperNeRF [28] dataset. The higher PSNR (↑) and higher MS-SSIM (↑)
denote better rendering quality. The color of each cell shows the best and the second best.

Rig(4 scenes) Interpolation(6 scenes)
Model PSNR MS-SSIM PSNR MS-SSIM

TiNeuVox [8] 24.20 0.836 27.08 0.922
4D-GS [44] 24.99 0.838 27.54 0.912

Grid4D (Ours) 25.50 0.856 28.56 0.933

Ground TruthGrid4D (Ours)DeformGS4D-GSTiNeuVox

Figure 5: Qualitative comparisons on the real-world HyperNeRF [28] dataset.

and Gaussians with heavily overlapping coordinates, such as ‘JumpingJacks’, Grid4D predicts the
deformations much more accurately than 4D-GS [44] which is built on the planed-based explicit
representation relying on the unsuitable low-rank assumption.

Comparison of rendering speed. Comparing Frames Per Second (FPS) directly might not be a fair
experiment because the number of Gaussians is quite different among different models. Therefore,
we list both the FPS and the corresponding Gaussian count in Table 4. Despite the acceleration
provided by the CUDA/C++ implementation in Grid4D, our proposed explicit representation makes
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Table 3: Quantitative comparison on the real-world Neu3D [16] dataset. The higher PSNR (↑) and
higher SSIM (↑) denote better rendering quality. The color of each cell shows the best.

Coffee Martini Cook Spinach Cut Beef Flame Salmon Flame Steak Sear Steak
Model PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

4D-GS [44] 27.34 0.898 32.50 0.942 32.26 0.942 27.99 0.902 32.54 0.951 33.44 0.954
Grid4D (Ours) 28.30 0.898 32.58 0.948 33.22 0.950 29.12 0.908 32.56 0.955 33.16 0.957

4D-GS Grid4D (Ours) Ground Truth

Figure 6: Qualitative comparisons on the real-world Neu3D [16] dataset.

Table 4: Rendering speed comparison on the synthetic D-NeRF [31] dataset. We report the FPS
based on the number of Gaussian points. Compared to other models, our model still achieves high
rendering speed and real-time rendering when facing a much larger amount of Gaussians.

FPS / Num(k) Balls Warrior Hook Jumping Lego Mutant Standup Trex

4D-GS [44] 182 / 28 168 / 40 91 / 39 207 / 24 104 / 93 173 / 38 201 / 27 151 / 68
DeformGS [50] 37 / 180 161 / 37 43 / 150 71 / 90 30 / 289 49 / 169 77 / 81 30 / 217
Grid4D (Ours) 91 / 192 334 / 46 79 / 210 241 / 68 64 / 302 157 / 126 170 / 100 86 / 254

Grid4D exhibit significantly faster rendering performance. When facing a huge number of Gaussians,
Grid4D maintains high rendering speed and achieves real-time rendering. However, Grid4D has
no improvement in the training speed compared to DeformGS [50]. Although we do not use all
Gaussians for the regularization, the smooth regularization requires Grid4D to encode the input twice,
which slows down the training process. Meanwhile, we find that Grid4D’s accurate deformation
predictions often lead to an increase in the number of Gaussians, contributing to time overhead.
Nevertheless, Grid4D needs less GPU memory for training than DeformGS [50], and the extra
computational cost has little influence on training in comparison to the significant improvements in
rendering quality. More details can be found in Section D of our supplementary.

4.3 Ablation Study and Analysis

To mitigate the distraction of imprecise camera poses, we mainly conduct our ablation studies on the
synthetic D-NeRF [31] dataset. Table 5 and Figure 7 show the results of our ablations.

Ablation of 4D decomposed hash encoding. The proposed 4D decomposed hash encoding splits the
4D input into four 3D inputs, encoding them separately without the unsuitable low-rank assumption
and high space complexity. To demonstrate the advantages of our encoding method, we employ the
simple 4D hyper-grid hash encoding in Grid4D w/o dec. The chaos in Figure 7(a) illustrates the
rendering degradation caused by the high hash collision rate.

Ablation of directional attention. The directional attention helps Grid4D accurately predict the
different deformations across different scene components. We scale the attention score to (0, 1) for
Grid4D w/o dir to demonstrate the advantage of the directional range (−1, 1). We also compare our
attention module with the simple architecture Grid4D w/o att which directly decodes the concatenation
of the spatial and temporal features. In Figure 7(b), the shadow has obvious different deformations
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Table 5: Quantitative ablation results on the synthetic D-NeRF [31] dataset. The color of each cell
shows the best and the second best.

Model w/o dec w/o reg w/o att w/o dir Grid4D (Ours)

PSNR 28.45 39.47 41.37 41.32 42.00
SSIM 0.949 0.991 0.993 0.993 0.994
LPIPS 0.055 0.012 0.009 0.009 0.008

w/o attw/o regw/o dec w/o dirGrid4D (Ours) Ground TruthGrid4D (Ours)

(a) (b)

Figure 7: Qualitative results of our ablation studies. (a) is the ablation of the 4D decomposed hash
encoding and the smooth regularization. The first row is the rendering results, and the second row
is the visualization of the deformation. The similar colors in the deformation map mean similar
deformation sizes on each axis. (b) is the ablation of the directional attention.

from the neighboring parts across the timeline. Our directional attention achieves high clarity in
rendering the portion with the shadow, emphasizing its effectiveness in capturing such variations.

Ablation of smooth regularization. The proposed smooth regularization aims at mitigating the
chaos of deformation prediction. We train Grid4D without the smooth regularization in Equation 8
and refer to the model as Grid4D w/o reg. The results in Figure 7(a) show that the regularization
reduces the deformation artifacts caused by the lack of smoothness.

We conduct more ablation studies for the architecture and smooth regularization. We also visualize
the intermediate results of our model. More results can be found in Section C of our supplementary.

5 Conclusion

In this paper, we have introduced Grid4D, a novel model for high-fidelity dynamic scene rendering.
Grid4D utilizes the proposed 4D decomposed hash encoding without the unsuitable low-rank as-
sumption and high space complexity. Additionally, the novel directional attention module effectively
aggregates the spatial and temporal features for more accurate deformation prediction across different
scene components. Moreover, we employed smooth regularization to mitigate chaos in deformation
prediction, resulting in high rendering quality. Our experiments demonstrate that Grid4D achieves
state-of-the-art performance and delivers high rendering speed for dynamic scene rendering. However,
Grid4D has no improvement in training speed, and like the other dynamic scene rendering models,
Grid4D might have artifacts when facing several dynamic scenes with complex and large motions.
Addressing these challenges remains an area for future research.
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– Supplementary –

A Details of Experimental Setup

Network Architecture of Grid4D. The upper limit of the hash table size is 219 for both spatial
and temporal 3D grids. The feature dimension of each voxel is 2 for all grids. We set the spatial
dimension resolutions of temporal grids according to the scale of the scene. We usually set the time
dimension resolution to a value between a half and a quarter of the time samples. The architecture
of our multi-head directional attention decoder is illustrated by Figure 8. The spatial and temporal
MLPs only have one fully connected layer and one activation layer. For the multi-head deformation
decoder, we set the depth to two for the HyperNeRF [28] dataset and one for the D-NeRF [31] dataset,
including the output layer, and set all the widths to 256.
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Figure 8: Architecture of our multi-head directional attention decoder.

Optimization. The scheduler of the learning rate primarily follows DeformGS [50, 13]. The loss
weight λc and λr in Equation 9 is set to 0.2 and 0.5 for common scenes. Notably, the learning rate
of the MLP decoder is determined based on the scale of the scene. Additionally, the learning rate
of the grid hash encoders is set to 10~50 times larger than the MLP decoder. We use Adam [14]
optimizer with β = (0.9, 0.999) for training and set the background to black. Due to the differences
between the spatial and temporal grids, we set different smooth regularization parameters for the
(x, y, z) grid in several scenes. For the scenes in the HyperNeRF [28] and Neu3D [16] dataset, we
use the SfM [32] points to initialize Gaussians.

Deformation Map. The formula for deformation maps is

∆x =
f(x, t+ τ)− f(x, t)

τ
(10)

where x is the canonical Gaussian position, and f is the deformation field. For all experiments, We
set τ to 0.05, and limit the absolute value of ∆x for color. This map shows the situation of predicted
deformation: the similar colors of two parts mean similar deformation sizes on each axis.

B Additional Comparisons

Additional results on D-NeRF [31] dataset. We visualize more experimental results on the D-
NeRF [31] dataset in Figure 13. We observe that Grid4D exhibits superior rendering quality compared
to the state-of-the-art models.

Per scene results on HyperNeRF [28] dataset. We provide the per-scene results for the experiments
on the real-world HyperNeRF [28] dataset. Table 6, Figure 10 and Figure 12 illustrate the comparisons.
While the quantitative results for Grid4D do not surpass those of other models in several scenes, it is
noteworthy that our model exhibits significantly improved clarity in rendering, as demonstrated in
Figure 10 and Figure 12. We also find reconstruction failures of DeformGS [50] in the ‘Teapot’ and
‘Broom’ scenes (the second and last line of Figure 10), as mentioned in their paper.

C Additional Ablations

Additional architecture ablations. We also conduct more ablation studies for Grid4D. We change
the depth d of the multi-head decoder to one and two for the D-NeRF dataset, and the max level
number L of the temporal grid hash encoder to 8 and 16. Additionally, we apply the simple position
deformation method to Grid4D as Grid4D w/o RT, which directly adds the deformation to the position
and is used in the prior works [44, 50]. The results can be found in the Table 7. We can find that
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Table 6: Per scene comparisons on the real world HyperNeRF [28] ‘vrig’ and ‘interp’ dataset. The
higher PSNR (↑) and higher MS-SSIM ↑ denote better rendering quality. The color of each cell
shows the best and the second best. We set all rendering resolutions to 536× 900.

3D Printer Broom Chicken (vrig) Peel Banana Teapot
Model PSNR MS-SSIM PSNR MS-SSIM PSNR MS-SSIM PSNR MS-SSIM PSNR MS-SSIM

TiNeuVox [8] 22.77 0.839 21.27 0.683 28.27 0.948 24.50 0.874 24.15 0.893
4D-GS [44] 22.00 0.807 21.80 0.684 28.55 0.927 27.62 0.934 26.99 0.941

Grid4D (Ours) 22.35 0.825 21.86 0.710 29.26 0.942 28.53 0.946 26.53 0.932

Chicken (interp) Cut Lemon Hand Slice Banana Chocolate
Model PSNR MS-SSIM PSNR MS-SSIM PSNR MS-SSIM PSNR MS-SSIM PSNR MS-SSIM

TiNeuVox [8] 27.69 0.951 28.54 0.955 27.44 0.872 27.67 0.916 26.97 0.948
4D-GS [44] 26.91 0.912 30.26 0.936 29.87 0.939 25.18 0.812 26.05 0.933

Grid4D (Ours) 27.31 0.924 32.18 0.967 31.31 0.958 25.79 0.853 28.23 0.965

Table 7: Additional ablation results of model architecture on the synthetic D-NeRF [31] dataset. The
color of each cell shows the best and the second best.

Model L = 8, d = 0 L = 16, d = 0 L = 32, d = 0 (Ours) L = 32, d = 1 L = 32, d = 2 w/o RT

PSNR (↑) 41.34 41.69 42.00 41.96 41.75 41.80

Table 8: Comparison of average training computational cost on the D-NeRF [31] dataset with a single
RTX 3090 GPU.

Model 4D-GS [44] DeformGS [50] SC-GS [12] Grid4D (Ours)

Time 20min 33min 75min 55min
GPU Memory 1GB 4.5GB 3.1GB 4.0GB

PSNR 35.41 40.16 41.65 42.00

when the model becomes deeper, the performance might become worse, and we consider that the
reason might be the training difficulties of deep MLPs.

Additional smooth regularization ablations. We conduct a smooth regularization for the both grid
hash encoder and MLP decoder in Grid4D w both by adding the following loss,

Ld = ||Rx −Rx+ϵ||22 + ||Tx − Tx+ϵ||22 (11)

where Rx, Tx are the predicted position deformation of the 4D input x, and Rx+ϵ, Tx+ϵ are the
deformation of the perturbed 4D input x+ ϵ. The results are shown in the left part of Table 9, and we
can find that the smooth regularization of the MLP decoder does not make sense. We consider that
this is because of the smooth inherent property of MLPs.

Visualization of feature, deformation, and depth maps. We also visualize the feature maps by pro-
jecting the L2 norm of the features encoding the Gaussian positions from our 4D decomposed hash en-
coder. We set the RGB color of the temporal feature map to the L2 norm of (x, y, t), (y, z, t), (x, z, t)
grid features, and the feature map is rendered by the rasterization of Gaussians with the specified
color. The results in Figure 11 denote that the proposed encoding method effectively represents the
deformation features in both temporal and spatial spaces. Also, the depth maps show that we have a
precise depth prediction.

D Limitation

Although our model achieves state-of-the-art performance with our proposed explicit representation,
Grid4D has no improvement in training speed. However, compared to DeformGS [50], Grid4D has
less memory overhead. As shown in Table 8, the computational cost has little influence on model
training. Figure 9 displays several artifacts when Grid4D and the state-of-the-art models [44, 50]
render several scenes with large and complex motions.
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Table 9: Additional ablation results of adding MLP decoder regularization on the D-NeRF [31]
dataset.

Model Grid4D w both Grid4D (Ours)

PSNR (↑) 41.92 42.00

Ground TruthGrid4D (Ours)DeformGS4D-GS Ground TruthGrid4D (Ours)DeformGS4D-GS

Figure 9: Artifacts of Grid4D and other state-of-the-art models [44, 50].

Ground TruthGrid4D (Ours)DeformGS4D-GSTiNeuVox

Figure 10: Additional qualitative comparisons on the real-world HyperNeRF [28] dataset.
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Figure 11: Additional analysis of Grid4D. Each line in turn shows the temporal feature maps, spatial
feature maps, deformation maps, and depth maps. The lighter parts in the feature maps denote the
stronger activation of the corresponding features.

Ground TruthGrid4D (Ours)DeformGS4D-GSTiNeuVox

Figure 12: Additional qualitative comparisons on the real-world HyperNeRF [28] dataset.

17



Ground TruthGrid4D (Ours)DeformGS4D-GSTiNeuVox
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Figure 13: Additional qualitative comparisons on the synthetic D-NeRF [31] dataset.
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