Navigating the Effect of Parametrization for Dimensionality Reduction

Haiyang HuangYingfan WangCynthia RudinDuke University

NeurIPS, Dec 2024

DR Methods Preserve High-Dim Structure

DR algorithm captures structure in high-dim space

DR Methods Preserve High-Dim Structure

And render them in low-dim for visualization

DR Methods Fail for Continual Learning

NN Graph Embedding **Original Data Optimization** 00000 504 2222 2 3 3333 3 4444 - - -

They perform effectively in offline learning...

DR Methods Fail for Continual Learning

Original Data

New Data

Embedding **Optimization**

...but struggle to adapt to continual learning.

- Limits adaptability to new data
- Demands substantial time for large datasets

Param DR Embeds New Data in Existing Space

Parametric DR methods maintain continuity while efficiently managing new mappings

Param DR Fail to Keep Structure

Param DR 1 Hidden Layer SVM: 0.45 2 Hidden Layer SVM: 0.54 3 Hidden Layer SVM: 0.93 Linear SVM: 0.46 Info-NC-t-SNE SVM: 0.52 SVM: 0.50 SVM: 0.68 SVM: 0.88 NCVis SVM: 0.75 SVM: 0.87 SVM: 0.93 SVM: 0.48 UMAP SVM: 0.94 SVM: 0.49 SVM: 0.80 SVM: 0.97 PaCMAP

0 1 2 3 4 5 6 7 8 9

Param DR Fail to Keep Structure

Hard Negatives and Insufficient Repulsion

Sample Data

Positives

Negatives

Hard Negatives

Hard Negatives and Insufficient Repulsion

UMAP

P-UMAP

P-Repulsor Encourages Separation

ParamRepulsor ensures cluster separability with hard negatives

More visualizations

ParamRepulsor achieves state-of-the-art on multiple datasets

Check our paper and code for more information!

Paper

Code

