The Expressive Capacity
of State Space Modaels:
A Formal Language
Perspective

Yash Sarrof, Yana Veitsman, and Michael Hahn



Motivation

Research on Expressivity Research on Expressivity
of RNNs and Transformers of SSMg *

*Merrill, W., Petty, J., & Sabharwal, A. The lllusion of State in State-Space Models. In Forty-first International Conference on Machine Learning.
*Jelassi, S., Brandfonbrener, D., & Kakade, S. M. Repeat After Me: Transformers are Better than State Space Models at Copying. In Forty-first
International Conference on Machine Learning.



Non-negative SSMs

All entries in A(x,) >=0
e Examples : Mamba*, GLA, HGRN2

ht = th—l + Ext s
A =exp(AA)
yr = Ch;

h, =A(x )°h,, + B(x,)

*Gu, A, & Dao, T. (2023). Mamba: Linear-time sequence modeling with selective state spaces. CoLM 2024



Star-Free Languages

Regular language class that is closed under finite
union, product and complement

but not
Kleene-star, aka *

Example :: Flip Flop, Bounded Dyck



Flip-Flop
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Minimalistic long-range dependency benchmark ~ Proxy for closed domain hallucinations.

Liu, Bingbin, et al. "Exposing attention glitches with flip-flop language modeling - NeurlPS 2023
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A 2 Layer SSM predictively models the Flip flop language
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e at arbitrary input lengths THEOREM

e with finite precision.
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Transformers can copy, SSMs can’t
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(b) Copy: shuffled strings

Jelassi, Samy, et al. "Repeat after me: Transformers are better than state space models at copying." ICML - 2024



Takeaway #1
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e Complementary Abilities
b/w SSMs & Transformers
e Future: Hybrid Architecture
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° Lieber, Opher, et al. "Jamba: A hybrid transformer-mamba language model." arXiv preprint arXiv:2403.19887 (2024).
° Waleffe, Roger, et al. "An Empirical Study of Mamba-based Language Models." arXiv preprint arXiv:2406.07887 (2024).
Ren, Liliang, et al. "Samba: Simple Hybrid State Space Models for Efficient Unlimited Context Language Modeling." arXiv preprint arXiv:2406.07522 (2024).



Non Star-Free Language

All Regular language that are not Star-Free ;)

Along with Union, Product and Complement

REQUIRE THE INCLUSION OF
Kleene-star *

Example :: PARITY



NONNEGATIVE SSMs cannot recognize PARITY

e at arbitrary input lengths
e with finite precision.
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Takeaway #2 Non Star-Free Languages

Why is counting so hard? 2

SSMs will struggle with
Modular counting
whenever required. A

(Non Star Free H 11 H 1
languages require it). TN S I
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Bin [1, 50] Transformer Accuracy ~ HEE Bin [1, 50] Mamba Accuracy

Bin [51, 100] Transformer Accuracy Bin [51, 100] Mamba Accuracy

Bhattamishra, Satwik, Kabir Ahuja, and Navin Goyal. "On the Ability and Limitations of Transformers to Recognize Formal Languages."- EMNLP 2020.
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Takeaway #1 Non Star-Free Languages
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Bhattamishra, Satwik, Kabir Ahuja, and Navin Goyal. "On the Ability and Limitations of Transformers to Recognize Formal Languages."- EMNLP 2020.
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NON-NEGATIVE SSMs can predictively model Regular Languages

\

iff the language is star free
with finite precision.

\

THEOREM




Empirical Results

Star-Free Languages
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Bhattamishra, Satwik, Kabir Ahuja, and Navin Goyal. "On the Ability and Limitations of Transformers to Recognize Formal Languages."- EMNLP 2020.
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Takeaway #3

e Exact characterisation of
Transformers™® in Finite
state case : Difficult.

e With SSMs, it's possible !

*Angluin, Dana, David Chiang, and Andy Yang. "Masked hard-attention transformers and boolean RASP recognize exactly the star-free languages." NeurlPS 2024
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Bounded Dyck : Dyck(K, m)
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the lawmaker makes the reporter questions
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Experimental Results

Mamba SSM Layer 1 vs Layer 2
(Dyck-(8, 10), Test)
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4 N

A 2 Layer SSM predictively models Bounded Dyck (K, m)

e withd= O(mlog K) fHEOREM
e with finite precision. PR oy
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Takeaway #4

SSMs can keep track of bounded
hierarchical structures
EFFICIENTLY !

SSMs can model hierarchical
structure of language

Language
is my strength!
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SSMs can model hierarchical structure of language

‘;; ' Why is counting so hard? 2

Recapping our takeaways

| KNOW MY

It would be easier to theoretically predict
failures & abilities LLMs based on SSMs.
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